Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T09:27:37.833Z Has data issue: false hasContentIssue false

The Heterogeneous Character of Phase Transformations Caused by Limited Vacancy Mobility

Published online by Cambridge University Press:  11 February 2011

Wolfgang Püschl
Affiliation:
Institut für Materialphysik, University of Vienna, Strudlhofgasse 4, A-1090 Vienna, Austria
William A. Soffa
Affiliation:
Department of Materials Science and Engineering, University of Pittsburgh, 842 Benedum Hall, Pittsburgh, PA 15261, U.S.A.
Wolfgang Pfeiler
Affiliation:
Institut für Materialphysik, University of Vienna, Strudlhofgasse 4, A-1090 Vienna, Austria
Get access

Abstract

In homogeneous phase transformations the order parameter proceeds towards equilibrium uniformly in all microvolumes of the system. However, defect-mediated diffusion (vacancy mechanism) involving local atomic jump processes during the early stages of transformation kinetics can produce discrete regions within which the order parameter has changed significantly embedded in an unperturbed matrix. This effect is evident in order-order transformations in B2 FeAl as measured by residual resistivity. An estimate of the heterogeneity regime is calculated in terms of vacancy diffusion parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Binder, K. and Fratzl, P. in: Phase Transformations in Material, Ed. Kostorz, G. (Wiley-VCH, Weinheim 2001) Chap. 6.Google Scholar
2. Cahn, J.W. and Hilliard, J.E., J. Chem. Phys. 28, 259 (1958).Google Scholar
3. Cahn, J.W. and Hilliard, J.E., J. Phys. Chem. 31, 3 and 788 (1959).Google Scholar
4. Cahn, J.W., TMS AIME 242, 166 (1968).Google Scholar
5. Hilliard, J.E. in Phase Transformations, ed. Aaronson, H.I., ASM, Metals Park, Ohio 1970, p. 497.Google Scholar
6. Soffa, W.A. and Laughlin, D.E. in Solid-Solid Phase Transformations, ed. Aaronson, H.I., (Met. Soc. AIME, Warrendale 1982) p. 159.Google Scholar
7. Soffa, W.A. and Laughlin, D.E., Acta Metall. 37, 3019 (1989).Google Scholar
8. Fratzl, P. and Penrose, O., Acta Metall. Mater. 43, 2921 (1995).Google Scholar
9. Laberge, C.A., Fratzl, P., and Lebowitz, L., Phys. Rev. Letters 75, 4448 (1995).Google Scholar
10. Lang, H., Rohrhofer, K., Rosenkranz, P., Kozubski, R., Püschl, W., and Pfeiler, W., Intermetallics 10, 283 (2002).Google Scholar
11. Pfeiler, W., JOM 52, 14 (2000).Google Scholar
12. Pfeiler, W. and Sprušil, B., Mater. Sci. Eng. A 324, 34 (2002).Google Scholar
13. Collins, G.S., Peng, L.S.-J., Wie, M., Mater. Res. Soc. Symp. Proc. 552, KK4.2.1 (1999).Google Scholar
14. Kogachi, M. and Haraguchi, T., Mater. Sci. Eng. A 230, 124 (1997).Google Scholar
15. Wolff, J., Franz, M., Broska, A., Kerl, R., Weinhagen, M., Kohler, B., Brauer, M., Faupel, F., and Hehenkamp, T., Intermetallics 7, 289 (1999).Google Scholar
16. Würschum, R. and Schaefer, H.-E., Mater. Sci. Forum 81, 255 (1997).Google Scholar
17. Rivière, J.P. and Grilhe, J., Acta Metall. 20, 1275 (1972).Google Scholar
18. Kogachi, M. and Haraguchi, T., Intermetallics 7, 981 (1999).Google Scholar
19. Mebed, A.M., Koyama, T., and Miyazaki, T. in: Solid-Solid Phase Transformations '99, Eds. Koiwa, M., Otsuka, K., and Miyazaki, T., (The Japan Institute of Metals, Sendai 1999), p. 61 Google Scholar
20. Allen, S.M. and Cahn, J.W., Acta Metall. 24, 425 (1976).Google Scholar
21. Beeler, J.R., Phys. Rev. A 138, 1259 (1965).Google Scholar
22. Athènes, M., Bellon, P., Martin, G., and Haider, F., Acta mater. 44, 4739 (1996).Google Scholar
23. Belashenko, K.D. and Vaks, V.G., J. Phys.: Condens. Matter 10, 1965 (1998).Google Scholar