Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:12:11.646Z Has data issue: false hasContentIssue false

Heteroepitaxy and Characterization of Low-Dislocation-Density GaN on Periodically Grooved Substrates

Published online by Cambridge University Press:  17 March 2011

T. Detchprohm
Affiliation:
High-Tech Research Center, Meijo University
M. Yano
Affiliation:
Department of Electrical & Electronic Engineering, Meijo University
R. Nakamura
Affiliation:
Department of Electrical & Electronic Engineering, Meijo University
S. Sano
Affiliation:
Department of Electrical & Electronic Engineering, Meijo University
S. Mochiduki
Affiliation:
Department of Electrical & Electronic Engineering, Meijo University
T. Nakamura
Affiliation:
Department of Electrical & Electronic Engineering, Meijo University
H. Amano
Affiliation:
High-Tech Research Center, Meijo University Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
I. Akasaki
Affiliation:
High-Tech Research Center, Meijo University Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
Get access

Abstract

We have developed a new method to prepare low-dislocation-density GaN by using periodically grooved substrates in a conventional MOVPE growth technique. This new approach was demonstrated for GaN grown on periodically grooved α-Al2O3(0001), 6H-SiC(0001)Si and Si(111) substrates. Dislocation densities were 2×107 cm−2 in low-dislocation-density area.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Amano, H., Sawaki, N., Akasaki, I. and Toyoda, Y., Appl. Phys. Lett. 48,353(1986).Google Scholar
[2] Usui, A., Sunakawa, H., Sakai, A. and Yamaguchi, A.A., Jpn. J. Appl. Phys. 36(7B), L899 (1997).Google Scholar
[3] Nam, O., Bremser, M., Zheleva, T. and Davis, R., Appl. Phys. Lett. 71,2638(1997).Google Scholar
[4] Iwaya, M., Takeuchi, T., Yamaguchi, S., Wetzel, C., Amano, H. and Akasaki, I., Jpn. J. Appl. Phys. 37,L316(1998).Google Scholar
[5] Nitta, S., Kashima, T., Kariya, M., Yakawa, Y., Yamaguchi, S., Amano, H. and Akasaki, I., Mat. Res. Soc. Symp. Proc. 595,W2.8.1(2000).Google Scholar
[6] Kozodoy, P., Ibbeston, J.P., Marchand, H., Fini, P.T., Keller, S., DenBaars, S.P., Speck, J.S. and Mishra, U.K., Appl.Phys.Lett. 73, 976(1998).Google Scholar
[7] Pernot, C., Hirano, A., Iwaya, M., Detchprohm, T., Amano, H. and Akasaki, I., Jpn. J. Appl. Phys. 38,L487(1999).Google Scholar
[8] Yano, M., Detchprohm, T., Nakamura, R., Sano, S., Mochiduki, S., Nakamura, T., Amano, H. and Akasaki, I., Proc. Int. Workshop on Nitride Semiconductors, Nagoya, Japan, 2000 (IPAP, Tokyo,2000) pp.292295.Google Scholar
[9] Ashby, C. I. H., Mitchell, C. C., Han, J., Missert, N. A., Provencio, P. P., Follstaedt, D. M., Peake, G. M., and Griego, L., Appl. Phys. Lett. 77,3233(2000).Google Scholar
[10] Detchprohm, T., Yano, M., Sano, S., Nakamura, R., Mochiduki, S., Nakamura, T., Amano, H. and Akasaki, I., Jpn. J. Appl. Phys. 40,L16(2001).Google Scholar
[11] Hiramatsu, K. et al., Proc. ICMOVPE-X (to be published as the special volume of J. Cryst. Growth)Google Scholar