Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:36:49.306Z Has data issue: false hasContentIssue false

The Heteroepitaxial Nucleation and Growth of Metal Oxides by Llvsztu Oxidation

Published online by Cambridge University Press:  17 March 2011

Mridula D. Bharadwaj
Affiliation:
Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, PA 15213, U.S.A
Gnang-wen Zhou
Affiliation:
Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, PA 15213, U.S.A
Judith C. Yang
Affiliation:
Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, PA 15213, U.S.A
Get access

Abstract

Here we report our investigations on the initial stages of Cu(OO1) oxidation in dry and moist atmosphere using in situ ultra high vacuum (UHV) transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Cu20 islands were observed to grow 3-dimensionally into the Cu film as seen through the above mentioned techniques. Further, we discuss our interpretation of the experimental observations that presence of water vapor in the oxidizing atmosphere retards the rate of Cu oxidation and Cu20 shows surprising reduction when exposed to water vapor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Milne, R.H. and Howie, A., Phil.Mag. 49,665 (1984).Google Scholar
2. -el, A. and Tobolski, J., Corros.Sci. 5,333 (1995).Google Scholar
3. Irene, E.A., J. Electrochem. SOC. 121, 614 (1974).Google Scholar
4. Ross, F.M. and Gibson, J.M., Phys. RevLett. 68,1782 (1992).Google Scholar
5. McDonald, M.L., Gibson, J.M. and Underwald, F.C., Rev.Sci. Instrum. 60,700 (1989).Google Scholar
6. Yang, J.C., Yeadon, M., Olynick, D. and Gibson, J.M., Microsc.Microaml. 3,121(1997).Google Scholar
7. Frances, S., Liebsle, F., Haq, S., Xiang, N. and Bowker, M., Surf. Sci. 315,284 (1994).Google Scholar
8. Bassenbacher, F., Jensen, F., Laegsgaard, E., Mortensen, K. and Stensgaard, I., J. VacSci. Tech. B 9,874 (1991).Google Scholar
9. Yang, J.C., Yeadon, M., Kolasa, Borys and Gibson, J.M., Microsc.Miscroaml. 4,334 (1998).Google Scholar
10. Yang, J.C., Yeadon, M. and Gibson, J.M., Appl.Phys. Lett. 70,3522 (1997).Google Scholar
11. Yang, J.C., Kolasa, B. and Gibson, J.M., Appl.Phys.Lett. 73,2841(1998).Google Scholar
12. Cabrera, N. and Mott, N.F., Rep.Prog.Phys. 12,163 (1948).Google Scholar
13. Swalin, R.A., Thermodynamics of Solids, PEd, (Wiley-Interscience publishers,1972), p116.Google Scholar
14. Michalski, T.A. and Freeman, S.W.,J.Am.CeramSoc. 66,284 (1983).Google Scholar
15. Fryburg, G.C., Miller, R.A., Kohl, F. J. and Stearns, C.A., J. Electrochem. Soc. 124,1738 (1977).Google Scholar