Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-09T05:48:22.122Z Has data issue: false hasContentIssue false

Heteroepitaxial Growth of InP on GaAs with Interface Layer Grown by Flow-Rate Modulation Epitaxy

Published online by Cambridge University Press:  28 February 2011

W. K. Chen
Affiliation:
Center for Electronic and Electrooptic Materials, State University of New York at Buf-falo, Amherst, N. Y. 14260
J. F. Chen
Affiliation:
Center for Electronic and Electrooptic Materials, State University of New York at Buf-falo, Amherst, N. Y. 14260
J. C. Chen
Affiliation:
Center for Electronic and Electrooptic Materials, State University of New York at Buf-falo, Amherst, N. Y. 14260
H.M. Kim
Affiliation:
Center for Electronic and Electrooptic Materials, State University of New York at Buf-falo, Amherst, N. Y. 14260
L. Anthony
Affiliation:
Center for Electronic and Electrooptic Materials, State University of New York at Buf-falo, Amherst, N. Y. 14260
C. R. Wie
Affiliation:
Center for Electronic and Electrooptic Materials, State University of New York at Buf-falo, Amherst, N. Y. 14260
P. L. Liu
Affiliation:
Center for Electronic and Electrooptic Materials, State University of New York at Buf-falo, Amherst, N. Y. 14260
Get access

Abstract

We have grown and characterized heteroepitaxial films of InP on GaAs. We demonstrate that by using flow-rate modulation epitaxy to grow the interface layer in a two-step process, we can improve the quality of heteroepitaxy films. The full-widths-at-half-maximum of the x-ray rocking curve and the 10-K photoluminescence spectrum for a 6.2-μm-thick InP/GaAs are 144 arcsec and 1.28 meV, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refercences:

1Nottenburg, R. N., Chen, Y. K., Panish, M. B., Humphrey, D. A., and Hamm, R., IEEE Electron Device Lett. EDL–10, 30 (1989).Google Scholar
2Pak, K., Wakahara, A., Sato, T., Yoshida, A., and Yonezu, H., J. Electrochem. Soc. 135, 2358 (1988).Google Scholar
3Horikawa, H., Ogawa, Y., Kawai, Y., and Sakuta, M., Appl. Phys. Lett. 53, 963 (1988).Google Scholar
4Pearton, S. J., Short, K. T., Macrander, A T., and Abernathy, C. R., Mazzi, V. P., Haegel, N. M., Al-Jassim, M. M., Vernon, S. M., and Haven, V. E., J. Appl. Phys. 65, 1083 (1989).Google Scholar
5Wuu, D. S., Tung, H. H., Horng, R. H., and Lee, M. K., J. Appl. Phys. 65, 1213 (1989).Google Scholar
6Razeghi, , Blondeau, R., Defour, M., Omnes, F., Maurel, P., and Brillouet, F., Appl. Phys. Lett. 53, 854 (1988).Google Scholar
7Chen, W. K., Chen, J. C., Chen, J. F., Wie, C. R., Hwang, D. M., and Liu, P. L., in First International Conference on Indium Phosphide and Related Materials for Advanced Electronic and Optical Devices, Proc. SPIE, 1144 (1989). (in press)Google Scholar
8Biegelsen, D. K., Ponce, F. A., Smith, A. J., and Tramontana, J. C., J. Appl. Phys. 61, 1856 (1987).Google Scholar
9Onozawa, S., Ueda, T., and Akiyama, M., J. Cryst Growth 93, 443 (1988).Google Scholar
10Chen, C. H., Kitamura, M., Cohen, R. M., and Stringfellow, G. B., Appl. Phys. Lett. 49, 963 (1986).Google Scholar