Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:36:39.506Z Has data issue: false hasContentIssue false

Heteroepitaxial Growth of Cubic Gan on GaAs(100) by Reactive Nitrogen Source

Published online by Cambridge University Press:  21 February 2011

Z.Q. He
Affiliation:
Surface Physics Laboratory and Fudan T.D.Lee Physics Laboratory, Fudan University, Shanghai 200433, CHINA
X.M. Ding
Affiliation:
Surface Physics Laboratory and Fudan T.D.Lee Physics Laboratory, Fudan University, Shanghai 200433, CHINA
X.Y. Hou
Affiliation:
Surface Physics Laboratory and Fudan T.D.Lee Physics Laboratory, Fudan University, Shanghai 200433, CHINA
Xun Wang
Affiliation:
Surface Physics Laboratory and Fudan T.D.Lee Physics Laboratory, Fudan University, Shanghai 200433, CHINA
Get access

Abstratct

Zinc-blende GaN has been successfully grown on GaAs(100) by using low-energy nitrogen ions produced by a conventional ion gun to replace the ECR plasma source in the traditional MBE facility for nitride growth. Analyses of the epilayer by X-ray diffraction and various electron spectroscopy techniques show that the crystalline quality is fairly good. This is attributed to the dominance of the reactive species N+ in the ionization products under the conditions we use.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Strite, S. and Morkoc, H., J. Vac. Sci Technol. B10, 1237(1992) and references cited therein.Google Scholar
2 Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
3 Nakamura, S., Senoh, M. and Mukai, T., Jpn. J. Appl. Phys. 30, L1708 (1991).Google Scholar
4 Nakamura, S., Mukai, T. and Senoh, M., Jpn. J. Appl. Phys. 30, L1998 (1991).Google Scholar
5 Mizuta, M., Fujieda, S., Matsumoto, Y. and Kawamura, T., Jpn. J. Appl. Phys. 25, L945 (1986).Google Scholar
6 Strite, S., Ruan, J., Li, Z., Salvador, A., Chen, H., Smith, D.J., Choyke, W.J., and Morkoc, H., J. Vac. Sci. Technol. B9, 1924 (1991).Google Scholar
7 Lei, T., Fanciulli, M., Molnar, R.J., Moustakas, T.D., Greham, R.J., and Scanlon, J., Appl. Phys. Lett. 59, 944 (1991).Google Scholar
8 Sitar, Z., Paisley, M.J., Smith, D.K., and Davis, R.F., Rev. Sci. Instrum. 61, 2407 (1990).Google Scholar
9 Sitar, Z., Paisley, M.J., Yan, B., Ruan, J., Choyke, W.J., and Davis, R.F., J. Vac. Sci. Technol. B8, 316(1990).Google Scholar
10 Sasaki, T. and Zembutsu, S., J. Appl. Phys. 61, 2533(1987).Google Scholar
11 DeLouise, L.A., J. Vac. Sci. Technol. A10, 1637(1992).Google Scholar
12 Ding, X.M., Dong, G.S., Lu, X.K., Chen, P. and Xun, Wang in Proc. 19th Intern. Conf. on the Phys. of Semicond. edited by Zawadzki, W. (Institute of Physics, Polish Academy of Sciences, Warsaw, 1988), p. 661.Google Scholar
13 Ding, X.M., Dong, G.S., Lu, X.K., Xiao, H.Y., Chen, P. and Wang, X., Appl. Surface Sci. 41/42, 123(1989)Google Scholar
14 Lu, X.K., Hou, X.Y., Ding, X.M., He, Z.Q. and Xun, Wang in Proc. 21st Intern. Conf. on the Phys. of Semicond.. edited by Ping, Jiang and Hou-Zhi, Zheng (World Scientific, Singapore, 1992), p. 413.Google Scholar
15 Manchon, D.D. Jr, Barker, S.A. Jr, Dean, P.J. and Zetterstrom, R.B., Solid State Commun. 8, 1227 (1970).Google Scholar
16 Dingle, R. and Ilegems, M., Solid State Commun. 9, 175 (1971).Google Scholar