Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T05:14:41.838Z Has data issue: false hasContentIssue false

Heteroepitaxial Growth of Ba0.5Sr0.5TiO3/SrRuO3 on YSZ/Si by Off-Axis Sputtering

Published online by Cambridge University Press:  15 February 2011

S.Y. Hou
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. Kwo
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R.K. Watts
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J.-Y. Cheng
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R.J. Cava
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W.F. Peck Jr
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D.K. Fork
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
Get access

Abstract

We demonstrate an epitaxial heterostructure of Ba0.5Sr0.5 TiO3/SrRuO3/YSZ on Si for potential charge storage applications. The dielectric Ba0.5Sr0.5TiO3 (BST) and conductive oxide SrRuO3 are both grown (110) oriented on YSZ (100) buffered Si by 90° off-axis sputtering. These films showed a high degree of crystallinity with minimal interdiffusion at the interfaces as examined by X-ray diffraction, Rutherford backscattering spectroscopy, and cross-section transmission electron microscopy. The in-plane epitaxial alignment of the films is BST/SRO 〈111〉 // YSZ 〈110〉 with a four-fold degeneracy. The dielectric constant and loss tangent of the epi-BST films are 360 and 0.01 at 10 kHz. The leakage current density is < 4×10∼−7 A/cm2 at 1 V. The room temperature dielectric constant (ε) of the BST films shows a roll-off in the 1–10 MHz range. This is attributed to the existence of a series resistance in the measurement circuit, which likely arises from the SrRuO3 electrode.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Jona, F. and Shirane, G., Ferroelectric Crystals, (Pergamon Press, New York, 1962).Google Scholar
[2] Gränicher, H. and Jakits, O., Nuovo Cimento, Suppl. 11, 480 (1954).Google Scholar
[3] Roy, D. and Krupanidhi, S.B., Appl. Phys. Lett. 62, 1056 (1993).Google Scholar
[4] Ichinose, N. and Ogiwara, T., Jpn. J. Appl. Phys. 32, 4115 (1993).Google Scholar
[5] Takemura, K., Sakuma, T., and Miyasaka, Y., Appl. Phys. Lett. 64, 2967 (1994).Google Scholar
[6] Yoon, S.-G., Lee, J.-C., and Safari, A., J. Apply. Phys. 76, 2999 (1994).Google Scholar
[7] Hou, S.Y., Kwo, J., Watts, R.K., Werder, D.J., Shmulovich, J., and O'Bryan, H.M., Mat. Res. Soc. Symp. Proc. 343, 1994, pp. 457462.Google Scholar
[8] Eom, C.B., Cava, R.J., Fleming, R.M., Phillips, J.M., van Dover, R.B., Marshall, J.H., Hsu, J.W.P., Krajewski, J.J., Peck, W.F. Jr, Science 258, 1766 (1992).Google Scholar
[9] Fork, D.K., Fenner, D.B., Connell, G.A.N., Phillips, J.M., and Geballe, T.H.. Appl. Phys. Lett. 57, 1137 (1990).Google Scholar
[10] Eom, C.B., van Dover, R.B., Phillips, J.M., Werder, D.J., Marshall, J.H., Chen, C.H., Cava, R.J., and Fleming, R.M., Appl. Phys. Lett. 63, 2570 (1993).Google Scholar
[11] Budai, J.D., Feenstra, R., and Boatner, L.A., Phys. Rev. B 39, 12355 (1989).Google Scholar
[12] Ghausi, M.S. and Kelley, J.J., Introduction to Distributed Parameter Networks, (Holt, Rinehart and Winston, New York), p. 20.Google Scholar