Published online by Cambridge University Press: 14 October 2013
Scanning Thermal Microscopy measurements with a resistive microprobe electrically heated were performed for different probe temperatures, for probe free in air and in contact with various specimens. The measured relative difference of Joule power dissipated in the probe when tip is in contact with a sample and when it is free in air is studied for different magnitude of the electrical current that heats the probe. A variation of this signal, never outlined before, is observed. A predictive modeling is used to explain these results and identify from the experimental data the global thermal conductance of the probe-sample thermal exchange for experiments performed in ambient conditions.