Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T05:37:55.004Z Has data issue: false hasContentIssue false

Hardening of Nickel Alloys by Ion Implantation of Titanium and Carbon

Published online by Cambridge University Press:  15 February 2011

S. M. Myers
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056, [email protected]
D. M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056, [email protected]
J. A. Knapp
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056, [email protected]
T. R. Christenson
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056, [email protected]
Get access

Abstract

Dual ion implantation of titanium and carbon was shown to produce an amorphous surface layer in annealed bulk nickel, in electroformed Ni, and in electroformed Ni7 5Fe 2 5. Diamond-tip nanoindentation coupled with finite-element modeling quantified the elastic and plastic mechanical properties of the implanted region. The amorphized matrix, with a thickness of about 100 nm, has a yield stress of approximately 6 GP and an intrinsic hardness near 16 GPa, exceeding by an order of magnitude the corresponding values for annealed bulk Ni. Implications for micro-electromechanical systems are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Becker, E. W., Ehrfeld, W., Hagmann, P., Maner, A., and Münchmeyer, D., Microelectron. Eng. 4, 35 (1986).Google Scholar
2. Guckel, H., Skrobis, K. J., Klein, J., and Christenson, T. R., J. Vac. Sci. Technol. A 12, 2559 (1994).Google Scholar
3. Christenson, T. R. and Guckel, H., SPIE Proc. 2639, 134 (1995).Google Scholar
4. Knapp, J. A., Follstaedt, D. M., and Doyle, B. L., Nucl. Instrum. Methods B 7–8, 38 (1985).Google Scholar
5. Follstaedt, D. M., Nucl. Instrum. Methods B 10–11, 549 (1985).Google Scholar
6. Follstaedt, D. M., Knapp, J. A., Barbour, J. C., Myers, S. M., and Dugger, M. T., in Beam Processing of Advanced Materials (ASM, Metals Park, OH, 1996) pp. 7789.Google Scholar
7. Takadoum, J., Pivin, J. C., Chaumont, J., and Roque-Carmes, C., J. Mater. Sci. 20, 1480 (1985).Google Scholar
8. Nastasi, M., Hirvonen, J.-P., Jervis, T. R., Pharr, G. M., and Oliver, W. C., J. Mater. Res. 3, 226 (1988).Google Scholar
9. Pope, L. E., Picraux, S. T., Follstaedt, D. M., Knapp, J. A., and Yost, F. G., J. Mater. for Energy Sys. 7, 27 (1985).Google Scholar
10. Mullendore, A. W., Pope, L. E., Hays, A. K., Nelson, G. C., Hills, C. R., and LeFevre, B. G., Thin Solid Films 186, 215 (1990).Google Scholar
11. Knapp, J. A., Follstaedt, D. M., Barbour, J. C., and Myers, S. M., Nucl. Instrum. Methods B, in press.Google Scholar
12. Knapp, J. A., Follstaedt, D. M., Barbour, J. C., Myers, S. M., Ager, J. W., Brown, I. G., and Monteiro, O. R., Proc. 1996 Fall MRS Meeting, in press.Google Scholar
13. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
14. Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).Google Scholar
15. Nanoindentation measurements were carried out by B. Lucas at Nano Instruments Inc., Knoxville, TN.Google Scholar
16. ABAQUS is a product of Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI.Google Scholar
17. Atlas of Stress-Strain Curves, edited by Boyer, H. E. (ASM, Metals Park, OH, 1987) p. 551.Google Scholar
18. Oliver, W. C., Hutchings, R., and Pethica, J. B., in Microindentation Techniques in Materials Science and Engineering, edited by Blau, P. J. and Lawn, B. R. (ASTM, Philadelphia, PA, 1986) pp. 90108.Google Scholar
19. Hagiwara, M, in Current Topics in Amorphous Materials: Physics and Technology, edited by Sakurai, Y., Hamakawa, Y., Masumoto, T., Shirae, K., and Suzuki, K. (Elsevier, Amsterdam, 1993) pp. 191195.Google Scholar
20. Niebuhr, J., Gerber, R., Schaller, A., and Müller, H.-W., Physical Data of Amorphous Metals, Part B (Fachinformationszentrum Karlsruhe, Germany, 1991).Google Scholar
21. Spaepen, F., in Physics of Defects, edited by Balian, R., Kléman, M., and Poirier, J.-P. (Elsevier, Amsterdam, 1981) pp. 133174.Google Scholar
22. Inoue, A., Iwadachi, T., Minemura, T., and Masumoto, T., Trans. Jap. Inst. Metals 22, 197 (1981).Google Scholar