Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T13:23:35.611Z Has data issue: false hasContentIssue false

Hall Effect in Organic Single-crystal Field-effect Transistors

Published online by Cambridge University Press:  01 February 2011

Jun Takeya
Affiliation:
[email protected], Osaka University, Chemistry, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
Koichi Yamada
Affiliation:
[email protected], CRIEPI, Tokyo, N/A, 201-8511, Japan
Kazuhito Tsukagoshi
Affiliation:
[email protected], RIKEN, Wako, N/A, 351-0198, Japan
Yoshinobu Aoyagi
Affiliation:
[email protected], RIKEN, Wako, N/A, 351-0198, Japan
Taishi Takenobu
Affiliation:
[email protected], IMR, Tohoku University, Sendai, N/A, 980-8577, Japan
Yoshihiro Iwasa
Affiliation:
[email protected], IMR, Tohoku University, Sendai, N/A, 980-8577, Japan
Get access

Abstract

We report Hall effect of charge carriers accumulated in organic field-effect transistors. Rubrene (C42H28) single crystals are shaped in to the Hall-bar congiguration in the devices so that the Hall signal is appropriately detected in external magnetic fields. It turned out that inverse Hall coefficient, having a positive sign, is close to the amount of electric-field induced charge upon the hole accumulation. The observation of the normal Hall effect means that the electromagnetic character of the surface charge is not of hopping carriers but resembles that of a two-dimensional hole-gas system. The direct access to the density of mobile charge carriers provides a tool to understand nontrivial features of organic field-effect transistors such as gate electric field dependent mobility.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Menard, E., Podzorov, V., Hur, S.-H., Gaur, A., Gershenson, M. E., and Rogers, J. A., Adv. Mater. (Weinheim, Ger.) 16, 2097 (2004).Google Scholar
2 Takeya, J., Nishikawa, T., Takenobu, T., Kobayashi, S., Iwasa, Y., Mitani, T., Goldmann, C., Krellner, C. and Batlogg, B., Appl. Phys. Lett. 85, 5078 (2004).Google Scholar
3 Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J. A. and Gershenson, M. E., Phys. Rev. Lett. 93, 086602 (2004).Google Scholar
4 Podzorov, V., Pudalov, V. M. and Gershenson, M. E., Appl. Phys. Lett. 82, 1739 (2003).Google Scholar
5 Boer, R. W. I. de, Klapwijk, T. M. and Morpurgo, A. F., Appl. Phys. Lett. 83, 4342 (2003).Google Scholar
6 Takeya, J., Goldmann, C., Haas, S., Pernstich, K. P., Ketterer, B., and Batlogg, B., J. Appl. Phys. 94, 5800 (2003).Google Scholar
7 Takeya, J., Nishikawa, T., Takenobu, T., Shimotani, H., Kobayashi, S., Mitani, T. and Iwasa, Y., Mater. Res. Soc. Symp. Proc. 871E, I7.1 (2005).Google Scholar
8 Pope, M. and Swenberg, C. E., Electronic Processes in Organic Crystals and Polymers (Oxford University Press, Oxford, 1999).Google Scholar
9 LeComber, P. G., Jones, D. I. and Spear, W. E., Philos. Mag. 35, 1173 (1977).Google Scholar
10 Friedman, L., J. Non-cryst. Solids 6, 329 (1971).Google Scholar
11 Yagi, I., Tsukagoshi, K. and Aoyagi, Y., Appl. Phys. Lett. 84, 813 (2004).Google Scholar