Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T08:25:17.195Z Has data issue: false hasContentIssue false

Halide Electroadsorption on Single Crystal Surfaces

Published online by Cambridge University Press:  10 February 2011

B. M. Ocko
Affiliation:
Department of Physics, Brookhaven National Laboratory, Upton, N.Y. 11973
Th. Wandlowski
Affiliation:
Department of Electrochemistry, University of Ulm, D-89069, Ulm, Germany
Get access

Abstract

The structure and phase behavior of halides have been investigated on single crystals of Ag and Au using synchrotron x-ray scattering techniques. The adlayer coverages are potential dependent. For all halides studied we found that with increasing potential, at a critical potential, a disordered adlayer transforms into an ordered structure. Often these ordered phases are incommensurate and exhibit potential-dependent lateral separations (electrocom-pression). We have analyzed the electrocompression in terms of a model which includes lateral interactions and partial charge. A continuous compression is not observed for Br on Ag(100). Rather, we find that the adsorption is site-specific (lattice gas) in both the ordered and disordered phases. The coverage increases with increasing potential and at a critical potential the disordered phase transforms to a well-ordered commensurate structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Toney, M.F., Gordon, J.G., and Melroy, O.R., SPIE Proc. 1550, 140 (1991).Google Scholar
[2] Toney, M.F. and Melroy, O.R., Electrochemical Interfaces: Modern Techniques for In-Situ Interface Characterization, edited by Abruna, H.D., (VCH Verlag Chemical, Publishers, Berlin, 1991), p. 57 Google Scholar
[3] Toney, M.F., Synchrotron Techniques in Interfacial Electrochemistry, edited by Melendres, C.A. and Tadjeddine, A., (Klewer, Dordrecht, 1994), p. 109.Google Scholar
[4] Ocko, B.M. and Wang, J., Synchrotron Techniques in Interfacial Electrochemistry, edited by Melendres, C.A. and Tadjeddine, A., (Klewer, Dordrecht, 1994), p. 127.Google Scholar
[5] Ocko, B.M., Magnussen, O.M., Wang, J. X., and Adžić, R.R, Nanoscale Probes of the Solid/Liquid Interface, edited by Gewirth, A.A. and Siegenthaler, H., (Klewer, Dordrecht, 1995), p. 103.Google Scholar
[6] Hamelin, A., and Bellier, J.P., J. Electroanal. Chem. 41, p. 179 (1973).Google Scholar
[7] Scherson, D.A., and Kolb, D.M., J. Electroanal. Chem. 176, p. 353 (1984).Google Scholar
[8] Gao, X.; Weaver, M. J. J. Am. Chem. Soc. 114, p. 8544 (1992);Google Scholar
Tao, N. J.; Lindsay, S. M. J. Phys. Chem. 96, p. 5213 (1992).Google Scholar
[9] Yamada, T., Ogaki, K., Okubu, S, and Itaya, K., Surf. Sci., 369, p. 321 (1996).Google Scholar
[10] Ocko, B.M., Watson, G.M., and Wang, J., J. Phys. Chem. 98, p. 897 (1994);Google Scholar
Wang, J., Watson, G.M., and Ocko, B.M., Physica A 200, p. 751 (1993).Google Scholar
[11] Wang, J., Ocko, B.M., Davenport, A.J., and Isaacs, H.S., Phys. Rev. B 46, p. 10321 (1992).Google Scholar
[12] Magnussen, O. M., Ocko, B.M., Wang, J. X., and Adžić, R.R., Phys. Rev. B 51, p. 5510 (1995).Google Scholar
[13] Magnussen, O. M., Wang, J. X., Adžić, R.R., and Ocko, B. M., J. Phys. Chem. 100, p. 5500 (1996)Google Scholar
[14] Ocko, B.M., Magnussen, O.M., Wang, J.X., Adzie, R.R, and Wandlowski, Th., Physica B 221, p. 261 (1994).Google Scholar
[15] Ocko, B.M., Magnussen, O. M., Wang, J. X., and Wandlowski, Th., Phys. Rev. B 53, p. 7654 (1996); andGoogle Scholar
Wandlowski, T., Wang, J. X., Magnussen, O. M., and Ocko, B. M. J. Phys. Chem. 100, p. 10277 (1996)Google Scholar
[16] Ocko, B.M., Wang, J.X., Wandlowski, Th. (unpublished); andGoogle Scholar
Wandlowski, Th., Ocko, B.M., and Wang, J.X. (unpublished)Google Scholar
[17] Taylor, D.E., Williams, E.D., Park, R.L., Bartelt, N.C., and Einstein, T.L., Phys. Rev. B, 32, p. 4653 (1985).Google Scholar
[18] Valette, G., Hamelin, A., Parsons, R., Z. Phys. Chem. N.F. 113 p. 71 (1978).Google Scholar
[19] Schultze, J. W. and Vetter, K.J., J. Electroanal. Chem. 44, p. 63 (1973).Google Scholar
[20] Schmickler, W., Interfacial Electrochemistry, Oxford University Press, New York, 1996.Google Scholar
[21] McDonald, I.R., Bound, D.G., and Klein, M.L., Mol. Phys. 45, p. 521 (1982).Google Scholar
[22] Shi, Z. and Lipkowski, J., J. Electroanal. Chem. 403, p. 225 (1996). Surf. Sci. 97 p. 409 (1980)Google Scholar
[23] see for instance Einstein, T.L., CRC Crit. Rev. Solid State Mat. Sci. 7, p. 261 (1978) andGoogle Scholar
Einstein, T.L. and Schrieffer, J.R., Phys. Rev. B 7, 3629 (1973).Google Scholar
[24] see for instance Bertel, E. and Netzer, F.P., Surf. Sci. 97 p. 409 (1980)Google Scholar