No CrossRef data available.
Article contents
H2S and HS- Adsorption on a Charged Cu Surface in an Electrolyte: Effect of Ionic Strength
Published online by Cambridge University Press: 10 February 2011
Abstract
We present a method for the calculation of the binding and rotational energies of neutral (H2S) and charged (HS-) molecules impinging upon a charged (Cu <100>) surface in the presence of an electrolyte. A molecular surface is constructed surrounding the H2S and HS- molecules forming boundary elements. A coupled Schrödinger-Poisson-Boltzmann iterative procedure treats the electronic structure of the molecules at the 6–31G**/MP2 level of theory and includes solvation effects through the single and double layers of charge induced by the electronic distribution. The molecule, together with its charged layers, forms a Molecular Single and Double Layer (MSDL), an object which then interacts with a Gouy-Chapman plane within the electrolyte. The additional induced charge at the molecular surface resulting from this electric field is obtained by solving a second set of boundary element equations. Repulsive interactions between the atoms of the molecule and those of the surface are obtained using a rigid-ion Hartree-Fock method. Binding energies of the molecule to the surface are determined as a function of the real surface charge imposed and also the ionic strength of the solution. It is found that surface charges can completely (180°) reorient these molecules and that the counterions in the solution can completely screen binding effects of even large surface charges.
Work supported by the United States Department of Energy under contract #DE-AC04–94AL85000.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1998