Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-12T13:58:47.527Z Has data issue: false hasContentIssue false

H Motion in Pd and Nb: A Molecular-Dynamics Study

Published online by Cambridge University Press:  01 January 1992

Yinggang Li
Affiliation:
Institute of Theoretical Physics, Chalmers University of Technology and University of Göteborg, S-412 96 Göteborg, Sweden
Göran Wahnström
Affiliation:
Department of Applied Physics, Chalmers University of Technology and University of Göteborg, S-412 96 Göteborg, Sweden
Get access

Abstract

Based on realistic many-body potentials molecular-dynamics simulations are carried out for PdH0.03 and NbH0.02. The H motion is investigated at two different temperatures, T = 300 and 600K, paying attention to the vibrational and diffusive motion. We find that the motion of H in Nb, a bcc metal, is more complicated than in Pd, a fee metal, and the differences are discussed. When detailed comparison is made with quasielastic neutron scattering data for H in Pd at 600K, we argue that in order to characterize the diffusion correctly, one has to include nonadiabatic effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hydrogen in Metals I, Topics in Applied Physics, 28, edited by Alefeld, G. and Volkl, J. (Springer-Verlag, Berlin, 1978).Google Scholar
2. Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285 (1983); Phys. Rev. B 29, 6443 (1984).Google Scholar
3. Finnis, M. W. and Sinclair, J. E., Philos. Mag. A 50, 45 (1984).Google Scholar
4. Pratt, L. R. and Eckert, J., Phys. Rev. B 39, 13170 (1989).Google Scholar
5. Li, Y. and Wahnström, G., Phys. Rev. Lett. 68, 3444 (1992).Google Scholar
6. Li, Y. and Wahnström, G., Phys. Rev. B 46, (1992) (in press).Google Scholar
7. Gillan, M. J., Phys. Rev. Lett. 58, 563 (1987); Phil. Mag. A 38, 257 (1988); J. Less- Common Metals 172-174, 529 (1991).Google Scholar
8. Christodoulos, F. and Gillan, M. J., Phil. Mag. B 63, 641 (1991); J. Phys.: Condens. Matter 3, 9429 (1991).Google Scholar
9. Foiles, S. M., Baskes, M. I. and Daw, M. S., Phys. Rev. B 33, 7983 (1986).Google Scholar
10. For improvements in extending the EAM to bcc metals, see Carlsson, A. E., Phys. Rev. B 44, 6590 (1991); Xu, W., Adams, J. B. and Foiles, S. M., (preprint).Google Scholar
11. Springer, T., in Ref. [1], page 75.Google Scholar
12. Völkl, J. and Alefeld, G., in Ref. [1], page 321.Google Scholar
13. Rush, J. J., Rowe, J. M., and Richter, D., Z. Phys. B, 55, 283 (1984).Google Scholar
14. Egelstaff, P. A. An Introduction to the Liquid State , (Academic Press, London, 1967).Google Scholar
15. Sköld, K. and Nelin, G., J. Phys. Chem. Solids 28, 2369 (1967).Google Scholar
16. Rowe, J. M. et al. , Phys. Rev. Lett. 29, 1250 (1972).Google Scholar
17. Carlile, C. J. and Ross, D. K., Solid State Commun. 15, 1923 (1974).Google Scholar
18. Chudley, C. T. and Elliott, R. J., Proc. Phys. Soc. London 77, 353 (1961).Google Scholar
19. Gillan, M. J., J. Phys. C: Solid State Phys. 19, 6169 (1986).Google Scholar
20. Li, Y. and Wahnström, G., (to be published).Google Scholar
21. Sköld, K., in Ref. [1], page 267.Google Scholar
22. Lottner, V. et al. , J. Phys. Chem. Solids 40, 557 (1979).Google Scholar
23. Dosch, H. et al. , Phys. Rev. B 46, 55 (1992).Google Scholar