No CrossRef data available.
Article contents
Guided Control of Cu2O Nanodot Self-Assembly on SrTiO3 (100)
Published online by Cambridge University Press: 17 March 2011
Abstract
A method has been developed for specifying the growth location of Cu2O nanodotson SrTiO3 (100) substrates. Growth location has been specified by using a focused ion beam (FIB) to modify microscopic and nanoscopic regions of the SrTiO3substrate prior to Cu2O deposition. Deposition onto the modified regions under carefully selected process conditions has generated nanodot growth at the edge of microscopic FIB-induced features and on top of nanoscopic FIB-induced features. For this work, an array of evenly spaced FIB implants was first patterned into several regions of each substrate. Within each sub-division of the array, the FIB implants were identical in Ga+ energy and dosage and implant diameter and spacing. After FIB surface modification and subsequent in-situ substrate cleaning, Cu2O nanodots were synthesized on the patterned SrTiO3 substrates using oxygen plasma assisted molecular beam epitaxy. The substrates and nanodots were characterized using atomic force microscopy at various stages of the process; in-situ X-ray photoelectron spectroscopy and Auger electron spectroscopy analysis demonstrated that the final stoichiometry of the nanodots was Cu2O. The photocatalytic decomposition of water on Cu2O under visible light irradiation has been reported. If the Cu2O can be located in the form ofislands on a carefully selected substrate, then it could be possible to greatly enhance the efficiency of the photochemical process.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004