Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T17:19:33.538Z Has data issue: false hasContentIssue false

Growth Phenomena of Quantum Dot Structures in the Ingaas System Investigated by Tem Techniques

Published online by Cambridge University Press:  10 February 2011

P. Werner*
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle / Saale, Germany
Get access

Abstract

The contribution is mainly focused on the formation and properties of InGaAs islands (quantum dots, QD) in a GaAs matrix, viz. a system showing properties similar to those of other materials systems. Depending on the growth techniques applied (MBE or MOCVD), the islands/dots differ in size, shape, chemical composition, and lattice strain. These parameters influence strongly the optical properties of QD structures, which might consist of single layers or complex 3-dimensional arrays. To reveal the correlation between the morphology/structure and the optical behavior of such systems different analytical methods are available, more effective in some combined applications. The present paper is mainly focused on the possibilities and limitations of transmission electron microscopy (TEM) to analyze the lattice structure of QDs down to the nm-range. Such TEM investigations imply a general problem: to deconvolute separately information on the QD size, shape (e.g., pyramidal or spherical islands), strain and composition. TEM imaging techniques used for such structural analyses will be described, including conventional diffraction contrast and high-resolution electron microscopy, respective examples of which will be presented. For the chemical analysis energy sensitive techniques (e.g., energy filtered images) are appropriate methods. Applications and limitations of such investigations will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] MRS Bulletin 23, pp. 1553 (1998), ,,Semiconductor Quantum Dots”.Google Scholar
[2]Weisbuch C, C., Vinter, B., ,,Quantum Semiconductor Structures”, Academic Press, New York 1991.Google Scholar
[3]Bimberg, D., Grundmann, M., Ledentsov, N.N., ,,Quantum Dot Heterostructures”, John Wiley & Sons, New York 1999.Google Scholar
[4]Ribeiro, K.H.-, Cheng, M., Petroff, P.M., Symposium Mater. Res. Soc. 452, 275, Pittsburgh 1997.Google Scholar
[5] Chr. Teichert, Phang, Y.H., Peticolas, L.J., Bean, J.C., and Lagally, M.G., in: Surface diffusion atomistic and collective processes, Ed. M.C., Tringides, NATO-ASI Series, Plenum Press, New York 1997.Google Scholar
[6]Zou, J., Liao, X.Z., Cockayne, D.J.H., Leon, R., Phys.Rev. B 59, 12279(1999).Google Scholar
[7]Christiansen, S., Albrecht, M., Strunk, H.P., and Maier, H.J., Appl.Phys.Lett. 64, 3617(1994).and, Computational Mat. Sci. 7, 213(1996).Google Scholar
[8]Grundmann, M., 0. Stier, and Bimberg, D., Phys.Rev. B52, 11969 (1995).Google Scholar
[9]Ruvimov S, S., Scheerschmidt, K 1995, phys.stat.sol a150, 471Google Scholar
[10]Thoma, S., Cerva, H.. Ultramicroscopy 38, 265(1991).Google Scholar
[11]Ourmazd, A., Schwander, P., Chr. Kiselowski, Seibt, M., Baumann, F.H., Kim, Y.O.,Inst. Phys. Conf. Ser. 134, 1 (1993).Google Scholar
[12]Stenkamp, D, Jager, W 1993, Inst. Phys. Conf. Ser. 134, 15Google Scholar
[13]A, Rosenauer, U, Fischer, Gerthsen, D, Forster, A 1998, Ultramicroscopy 72, 121Google Scholar
[14]Schneider, R., Kirmse, H., Neumann, W., Heinrichsdorff, F., and Bimberg, D., Inst. Phys. Conf. Ser., 1999 (in press).Google Scholar
[15]Tersoff, J., Teichert, Chr., Lagalli, M.G., Phys.Rev.Lett 76, 1675(1996).Google Scholar
[16]Heinrichsdorff, F., Mao, M.H., Kirstaedter, N., Krost, A., Bimberg, D., Kosogov, A., and Werner, P., Appl. Phys. Lett. 71, 22(1997).Google Scholar
[17]Maximov, M.V., Tsatsul'nikov, A.F., Volovik, B.V., Bedarev, D.A., Egorov, A. Yu., Zhukov, A.E., Kovsh, A.R., Bert, N.A., Ustinov, V.M.,. Alferov, Zh. I., Ledentsov, N.N., Bimberg, D., Soshnikov, I.P., Werner, P., Appl. Phys. Lett. 75, 2347(1999).Google Scholar
[18]Abstreiter, G., Schittenhelm, P., Engel, C., Silveira, E., Zrenner, A., Meertens, D., Jiger, W., Semicond. Sci. Technol. 11, 1521(1996).Google Scholar
[19]Schmidt, O.G., Kienzle, O., Hao, Y., Eberl, K., and Ernst, F., Appl. Phys. Lett. 74, 1272(1999) and Appl. Phys. Lett. 73, 659(1998).Google Scholar
[20]Zakharov, N.D., Werner, P., Gosele, U., Heitz, R., Bimberg, D., Ledentsov, N.N., Ustinov, V.M., Volovik, B.V., Alferov, Zh. I., Polyakov, N.K., Petrov, V.N., Egorov, V.A. and Cirlin, G.E., Symposium Mat. Res. Soc., Spring Meeting 1999, in press.Google Scholar