Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T08:53:14.987Z Has data issue: false hasContentIssue false

The Growth of ZnO on CrN Buffer Layer Using Surface Phase Control by Plasma Assisted Molecular-beam Epitaxy

Published online by Cambridge University Press:  01 February 2011

Jinsub Park
Affiliation:
[email protected], Institute for materials research, Tohoku University, 2-1-1 katahira Aobaku, Sendai, 980-8577, Japan
Tsutomu Minegishi
Affiliation:
[email protected], Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
Seunghwan Park
Affiliation:
[email protected], Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
Inho Im
Affiliation:
[email protected], Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
Takahasi Hanada
Affiliation:
[email protected], Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
Soonku Hong
Affiliation:
[email protected], Materials Science and Engineering,Chungnam National University, Daejeon, 305-764, Korea, Republic of
Takenari Goto
Affiliation:
[email protected], Center for Interdisciplinary Research, Tohoku University, Sendai, 980-8578, Japan
Meoungwhan Cho
Affiliation:
[email protected], Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
Takafumi Yao
Affiliation:
[email protected], Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
Get access

Abstract

Epitaxial ZnO films are successfully grown on Al2O3 substrates with phase controlled CrN buffer layer using Zn and O-plasma pre-exposures on CrN layers by plasma assisted molecular beam epitaxy (P-MBE). The Zn exposures on CrN layers prior to ZnO film growth result in the formation of rocksalt CrN without surface oxidation. On the other hand, the surface of the initially deposited CrN layers with rocksalt structure changes into hexagonal structured Cr2O3 after O-plasma exposure as confirmed by reflection high-energy electron diffraction (RHEED) and high resolution transmission electron microscopy (HR TEM). Etching studies show that the ZnO films grown on CrN have +C polarity, while the polarity of ZnO on Cr2O3/CrN double buffer is -C polarity. The interdiffusion of Zn and Cr occurs at the ZnO/CrN interface, while the interdiffusion is negligible at the ZnO/ Cr2O3 interface. The interdiffusion of Cr and Zn can be suppressed by inserting a low-temperature ZnO buffer layer in between ZnO and CrN layers, which helps improve the crystal quality of ZnO layers grown with CrN buffer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bagnall, D.M., Chen, Y. F., Zhu, Z., Yao, T., Koyama, S., Shen, M. Y., and Goto, T., Appl. Phys. Lett. 70, 2230 (1997)Google Scholar
2. Hong, S.K., Ho, H. J., Chen, Y. F., and Yao, T., J. Vac. Sci. Technol. B 20, 1656 (2002)Google Scholar
3. Kato, H., Miyamoto, K., Sano, M., and Yao, T., Appl. Phys. Lett. 84, 4562 (2004)Google Scholar
4. Wang, Y., Du, X.L., Mei, Z.X., Zeng, Z.Q., Ying, M.J., Yuan, H.T., Jia, J.F., Xue, Q.K., and Zhang, Z., Appl. Phys. Lett. 87, 051901 (2005)Google Scholar
5. Hong, S.K., Hanada, T., Ko, H.J., Chen, Y., and Yao, T.. Phys. Rev. B. 65, 115331 (2002).Google Scholar
6. Chen, Y., Hong, S.K., Ko, H.J., Kirshner, V., Senisch, H., and Yao, T., Appl. Phys. Lett. 78, 3352 (2001)Google Scholar
7. Onuma, T., Chichibu, S.F., and Uedono, A., Appl. Phys. Lett. 85, 5586 (2004)Google Scholar
8. Lee, W.H., Kim, J.J., Lee, H.S., Zahra, V., Kim, S.T., Cho, M.W., and Yao, T., Inst. Phys. Confr. Ser. No 184. 365(2004)Google Scholar
9. Lu, F.H., Chen, H.Y., Thin solid films 398–399 368,(2001)Google Scholar
10. Minegishi, T., Yoo, J.H., suzuki, H., Vashaei, Z., Inaba, K., Shim, K. and Yao, T., J. Vac. Sci. Technol.B 23(3) (2005)Google Scholar
11. Warren, B..E., X-ray diffraction, (Addison-weseley publishing company, 1969)Google Scholar
12. Lin, B., Fu, Z., Jia, Y., and Liao, G., J. Electrochem. Soc. 148, G110 (2001)Google Scholar
13. Lin, Y.J., Tsai, C.L., Lu, Y.M., and Liu, C.J.. J. Appl. Phys. 99, 093501(2006)Google Scholar
14. Meyer, K.K., Alves, H., Hofmann, D.M., Kregseis, W., Forster, D., bertram, F., Christen, J., Hoffmann, A., Straburg, M., Dworzak, M., Haboeck, U., and Rodina, A.V., Phys. stat. sol. (b) 241, 231 (2004)Google Scholar
15. Hong, S.K, Ko, H.J., Chen, Y., Hanada, T., and Takafumi, Yao, J. Cryst. Growth 214/215 81 (2000)Google Scholar
16. Wang, X.. Tomita, Y., Roh, O.H., Ohsugin, M., Che, S.B., Ishitani, Y., and Yoshikawa, A., Appl. Phys. Lett. 86, 011921 (2005)Google Scholar