Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:10:31.377Z Has data issue: false hasContentIssue false

Growth of ultra thin ZnSe nanowires

Published online by Cambridge University Press:  01 February 2011

Tai Lun Wong
Affiliation:
[email protected], HKUST, Physics, Kolwoon, Hong Kong
Yuan Cai
Affiliation:
[email protected], HKUST, Physics, Kolwoon, Hong Kong
Siu Keung Chan
Affiliation:
[email protected], HKUST, Physics, Kolwoon, Hong Kong
Iam Keong Sou
Affiliation:
[email protected], HKUST, Physics, Kolwoon, Hong Kong
Ning Wang
Affiliation:
[email protected], HKUST, Physics, Kolwoon, Hong Kong
Get access

Abstract

We report here the growth of ultra thin ZnSe nanowires at low temperatures by Au-catalyzed molecule beam epitaxy and structural characterization of the nanowires. ZnSe nanowires may contain a high density of stacking faults and twins from low temperature growth and show a phase change from cubic to hexagonal structures. Ultra thin ZnSe nanowires can grow at a temperature below the eutectic point, and the relationship between the growth rates and nanowire diameters is V = 1/dn + C0 (C0 is a constant and n is a fitting parameter). The growth rate of the ultra thin nanowires at low temperatures can be elucidated based on the model involving interface incorporation and diffusion, in which the catalyst is solidified, and the nanowire growth is controlled through the diffusion of atoms into the interface between catalyst and the nanowire. The growth rate of ZnSe ultra-thin nanowires has been simulated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Givargizov, E. I., J. Cryst. Growth 31, 20 (1975).Google Scholar
2. Givargizov, E. I., Highly Anisotropic Crystal, (D. Reidel Pub. Co., 1987) pp. 104.Google Scholar
3. Tan, T. Y., Li, N., and Gosele, U., Applied Physics A-Materials Science & Processing 78, 519 (2004).Google Scholar
4. Kodambaka, S., Tersoff, J., Reuter, M. C., and Ross, F. M., Phys. Rev. Lett. 96, 096105 (2006).Google Scholar
5. Cai, Y., Chan, S. K., Sou, I. K., Chan, Y. F., Su, D. S., and Wang, N., Adv. Mater. 18, 109113 (2006).Google Scholar
6. Kodambaka, S., Tersoff, J., Reuter, M. C., and Ross, F. M., Science 316, 729 (2007).Google Scholar
7. Neumann, G. and Neumann, G. M., Surface Self-Diffusion of Metals, Diffusion Monograph Series, (Diffusion Information Center, 1972) pp. 105 Google Scholar
8. Chan, Y. F., Duan, X. F., Chan, S. K., Sou, I. K., Zhang, X. X., and Wang, N., Appl. Phys. Lett. 83, 2665 (2003).Google Scholar
9. Cai, Y., Chan, S. K., Sou, I. K., Chan, Y. T., Su, D. S., and Wang, N., Small 3, 111 (2007).Google Scholar
10. Zhang, Z. H., Wang, F. F., and Duan, X. F., J. Cryst. Growth 303, 612 (2007).Google Scholar
11. Philipose, U., Saxena, A., Ruda, H. E., Simpson, P. J., Wang, Y. Q., and Kavanagh, K. L., Nanotechnology 19, 215715 (2008).Google Scholar
12. Froberg, L. E., Seifert, W., and Johansson, J., Phy. Rev. B 76, 15340 (2007).Google Scholar
13. Seifert, W., Borgstrom, M., Deppert, K., Dick, K. A., Johansson, J., Larsson, M. W., Martensson, T., Skold, N., Svensson, C. P. T., Wacaser, B. A., Wallenberg, L. R., and Samuelson, L., J. Cryst. Growth 272, 211 (2004).Google Scholar
14. Gjostein, N. A., Diffusion, edited by Aaronson, , (American Society for Metals, 1973) pp. 241.Google Scholar
15. Kaur, I., Fundamentals of grain and interphase boundary diffusion, (John Wiley, 1995) pp. 11, 17Google Scholar
16. Johnson, M. D., Leung, K. T., Birch, A., Orr, B. G., Tersoff, J., Surface Science 350, 254258 (1996)Google Scholar