Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T18:45:01.522Z Has data issue: false hasContentIssue false

Growth of Thin <p> μc-Si:H on Intrinsic a-Si:H for <nip> Solar Cells Application

Published online by Cambridge University Press:  15 February 2011

P. Pemet
Affiliation:
IMT, Université de Neuchâtel, A.-L. Breguet 2, 2000 Neuchâtel, Switzerland.
M. Goetz
Affiliation:
IMT, Université de Neuchâtel, A.-L. Breguet 2, 2000 Neuchâtel, Switzerland.
H. Keppner
Affiliation:
IMT, Université de Neuchâtel, A.-L. Breguet 2, 2000 Neuchâtel, Switzerland.
A. Shah
Affiliation:
IMT, Université de Neuchâtel, A.-L. Breguet 2, 2000 Neuchâtel, Switzerland.
Get access

Abstract

The <p> μc-SiC:H / <i> a-Si:H junction can be considered to be a sub-system of a n/i/p solar cell. Optimised performance of this junction can be assumed to be a key feature for obtaining high efficiency solar cells.

In this paper the authors present results on the conductivity of boron doped microcrystalline hydrogenated silicon (<p> μc-Si:H) thin films deposited on amorphous substrates (e.g. glass or glass/<i> a-Si:H). It is shown that, without any treatment of the substrate or of the underlying surface, the <p> layers showed a strongly reduced conductivity. This indicates either a bad nucleation or a poor microcrystalline behaviour. By using an appropriate surface treatment of the substrate, a gain in photoconductivity of about three orders of magnitude could be obtained (σ > 3 S/cm at a layer thickness of 400Å). We conclude from this, that for thin <p> type μc-Si:H layers the nucleation conditions are essential for obtaining best electric properties of the film w.r.t. solar cell performance.

Based on these results, interface treatment was successfully implemented in n/i/p solar cells deposited on TCO coated glass and stainless steel. The results of these experiments are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Curtins, H., Wyrsch, N. and Shah, A., Electronics Lett. 23, 228 (1987).Google Scholar
2Flückiger, R., Ph.D. thesis, Institute of Microtechnology, University of Neuchâtel, ISBN 3–89191–965–4 (1995).Google Scholar
3Fischer, D., Ph.D. thesis, Institute of Microtechnology, University of Neuchâtel (1994).Google Scholar
4Torres, P., Flückiger, R., Meier, J., Keppner, H., Kroll, U., Shklover, V., Shah, A., Proc. of 13th EC PVSEC, 1638 (1995).Google Scholar
5Pellaton Vaucher, N. et al. , to be presented at PVSEC-9, Miyasaki.Google Scholar
6Goldstein, B., Dickson, C. R., Campbell, I. H. and Fauchet, P. M., Appl. Phys. Lett. 53, 2672(1988).Google Scholar
7Yang, L., Chen, L. and Catalano, A., MRS Symp. Proc. 283, 463 (1993).Google Scholar
8Catalano, A. et al. , Solar Cells, 27, p 25, 1989.Google Scholar
9Fujikake, S., Ohta, H., Asano, A., Ichikawa, Y. and Sakai, H., MRS Symp. Proc. 258, 875 (1992).Google Scholar
10Li, Y.-M., Jackson, F., Yang, L., Fieselmann, B.F. and Russell, L., MRS Symp. Proc. 336, 663 (1994).Google Scholar
11Flückiger, R., Meier, J., Shah, A., Pohl, J., Tzolov, M. and Carius, R., MRS Symp. Proc. 358, 793 (1995).Google Scholar
12Nakamura, K., Yoshino, K. and Shimizu, I., 1st WCPEC, 1, 480 (1994).Google Scholar