Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T15:38:47.186Z Has data issue: false hasContentIssue false

Growth of Single-Walled Carbon Nanotubes on Surface with Controlled Structures

Published online by Cambridge University Press:  31 January 2011

Jin Zhang
Affiliation:
[email protected], Peking University, College of Chemistry and Molecular Enginerring, Beijing, China
Guo Hong
Affiliation:
[email protected], Peking University, College of Chemistry and Molecular Enginerring, Beijing, China
Liming Xie
Affiliation:
[email protected], Peking University, College of Chemistry and Molecular Enginerring, Beijing, China
Xuechun Yu
Affiliation:
[email protected], Peking University, College of Chemistry and Molecular Enginerring, Beijing, China
Zhongfan Liu
Affiliation:
[email protected], Peking University, College of Chemistry and Molecular Enginerring, Beijing, China
Get access

Abstract

Due to their excellent properties, single-walled carbon nanotubes (SWNTs) have been regarded as one of the most potential materials for future applications in nanoelectronic devices. However, there is a huge gulf between production and applications. To meet the needs for applications, SWNTs' chirality, metallic/semiconducting property and morphology should be controlled in the growth process. Together with our recent works, we present herein a brief review on the growth of SWNTs on surface with controlled structures, including 1) Cap engineering for SWNTs growth with controlled chirality; 2) Reaction activity diversity induced growth of semiconducting SWNTs; and 3) Combination of two growth modes for fabricating SWNTs on surface with controlled morphology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, X., Yue, W. B., He, M. S., Liu, M. H., Zhang, J., and Liu, Z. F., Chem. Mater. 16, 799, (2004)Google Scholar
2. He, M. S., Duan, X. J., Wang, X., Zhang, J., Liu, Z. F., and Robinson, C., J. Phys. Chem. B 108, 12665, (2005)Google Scholar
3. He, M. S., Ling, X., Zhang, J., and Liu, Z. F., J. Phys. Chem. B 109, 10946, (2005)Google Scholar
4. Yao, Y. G., Li, Q. W., Zhang, J., Liu, R, Jiao, L.Y., Tian, Y., , T, Zhu, , and Liu, Z. F., Nat. Mater. 6, 283, (2007).Google Scholar
5. Yao, Y. G., Liu, R, Zhang, J., Jiao, L.Y., and Liu, Z. F., J. Phys. Chem. C 111, 8407, (2007).Google Scholar
6. Yao, Y. G., Dai, X. C., Liu, R, Zhang, J., and Liu, Z. F., J. Phys. Chem. C 113, 13051, (2009)Google Scholar
7. Reich, S., Li, L., and Robertson, J., Phys. Stat. Sol. (b) 243, 3494 (2006).Google Scholar
8. Wang, Y. H., Kim, M. J., Shan, H. W, Kittrell, C., Fan, H., Ericson, L. M., Hwang, W. F., Arepalli, S., Hauge, R. H., and Smalley, R. E., Nano Lett. 5, 997 (2005)Google Scholar
9. Smalley, R. E., Li, Y. B., Moore, V. C., Price, B. K., Colorado, R., Howard, J.. Schmidt, K., Hauge, R. H., Barron, A. R., and Tour, J. M., J. Am. Chem. Soc. 128, 15824 (2006).Google Scholar
10. Ren, Z. F., Nature nanotech. 2, 17 (2007).Google Scholar
11. Yao, Y. G., Feng, C. Q., Zhang, J., and Liu, Z. F., Nano Lett. 9, 1673 (2009).Google Scholar
12. Yu, X. C., Zhang, J., Choi, W. M., Choi, J. Y., Kim, J. M., Gan, L. B., and Liu, Z. F., submitted 13. An, K. H., Park, J. S., Yang, C. M., Jeong, S. Y., Lim, S. C., Kang, C., Son, J. H., Jeong, M. S., and Lee, Y. H, J. Am. Chem. Soc. 127, 5196, (2004)Google Scholar
14. Krupke, R., Hennrich, F., Lohneysen, H. von, Kappes, M. M., Science 301, 344, (2003)Google Scholar
15. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I., Hersam, M. C., Nat. Nanotechnol. 1, 60, (2006)Google Scholar
16. Zhang, G. Y., Qi, P. F., Wang, X. R., Lu, Y. R., Li, X. L., Tu, R., Bangsaruntip, S., Mann, D., Zhang, L., and Dai, H. J., Science 314, 974, (2006)Google Scholar
17. Li, Y. M., Mann, D., Rolandi, M., Kim, W., Ural, A., Hung, S., Javey, A., Cao, J., Wang, D., Yenilmez, E., Wang, Q., Gibbons, J. F., Nishi, Y., and Dai, H. J., Nano Lett. 4, 317, (2004)Google Scholar
18. Ding, L., Tselev, A., Wang, J., Yuan, D. N., Chu, H. B., McNicholas, T. P., Li, Y., and Liu, J., Nano Lett. 9, 800, (2009)Google Scholar
19. Hong, G., Zhang, B., Peng, B. H., Zhang, J., Choi, W. M., Choi, J. Y., Kim, J. M., and Liu, Z. F., J. Am. Chem. Soc. 131, 14642, (2009)Google Scholar
20. Zhang, Y. Y., Zhang, Y., Xian, X. J., Zhang, J., and Liu, Z. F., J. Phys. Chem. C 112, 3849, (2008)Google Scholar
21. Yao, Y. G., Dai, X. C., Feng, C. Q., Zhang, J., Liang, X. L., Ding, L., Choi, W., Choi, J. Y., Kim, J. M., and Liu, Z. F., Adv. Mater. 21, 4158, (2009).Google Scholar
22. Zhang, B., Hong, G., Peng, B., Zhang, J., Choi, W., Kim, J. M., Choi, J. Y., and Liu, Z. F., J. Phys. Chem. C 113, 5341, (2009).Google Scholar
23. Feng, C. Q., Yao, Y. G., Zhang, J., and Liu, Z. F., Nano research 2, 768, (2009).Google Scholar
24. Huang, S. M., Maynor, B., Cai, X. Y., and Liu, J., Adv. Mater. 15, 1651, (2003).Google Scholar
25. Han, S., Liu, X. L., and Zhou, C. W., J. Am. Chem. Soc. 127, 5294, (2005).Google Scholar
26. Kocabas, C., Shim, M., and Rogers, J. A., J. Am. Chem. Soc. 128, 4540, (2006).Google Scholar
27. Geblinger, N., Ismach, A., and Joselevich, E., Nat. Nanotechnol. 3, 195, (2008).Google Scholar
28. Hofmann, M., Nezich, D., Reina, A., and Kong, J., Nano Lett. 8, 4122, (2008).Google Scholar