Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T15:29:10.586Z Has data issue: false hasContentIssue false

Growth of silicon nanowires-based heterostructures and their plasmonic modeling

Published online by Cambridge University Press:  16 April 2013

Yuan Li
Affiliation:
Metallurgical and Materials Engineering Department, Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, AL 35487, U.S.A.
Wenwu Shi
Affiliation:
Metallurgical and Materials Engineering Department, Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, AL 35487, U.S.A.
John C. Dykes
Affiliation:
REU, Department of Mathematics, The University of Alabama, Tuscaloosa, AL 35487, U.S.A
Nitin Chopra*
Affiliation:
Metallurgical and Materials Engineering Department, Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, AL 35487, U.S.A. Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, U.S.A.
*
*Corresponding Author E mail: [email protected], Tel: 205-348-4153, Fax: 205-348-2164
Get access

Abstract

Complex nanoscale architectures based on gold nanoparticles (AuNPs) can result in spatially-resolved plasmonics. Herein, we demonstrate the growth of silicon nanowires (SiNWs), heterostructures of SiNWs decorated with AuNPs, and SiNWs decorated with graphene shells encapsulated gold nanoparticles (GNPs). The fabrication approach combined CVD growth of nanowires and graphene with direct nucleation of AuNPs. The plasmonic or optical properties of SiNWs and their complex heterostructures were simulated using discrete dipole approximation method. Extinction efficiency spectra peak for SiNW significantly red-shifted (from 512 nm to 597 nm or 674 nm) after decoration with AuNPs, irrespective of the incident wave vector. Finally, SiNW decorated with GNPs resulted in incident wave vector-dependent extinction efficiency peak. For this case, wave vector aligned with the nanowire axial direction showed a broad peak at ∼535 nm. However, significant scattering and no peak was observed when aligned in radial direction of the SiNWs. Such spatially-resolved and tunable plasmonic or optical properties of nanoscale heterostructures hold strong potential for optical sensor and devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fleischmann, M., Hendra, P. J., and McQuillan, A. J., Chem. Phys. Lett. 26, 163 (1974).CrossRefGoogle Scholar
Campion, A., and Kambhampati, P., Chem. Soc. Rev. 27, 241 (1998).CrossRefGoogle Scholar
Tian, Z. Q., Ren, B., and Wu, D. Y., J. Phys. Chem. B 106, 9463 (2002).CrossRefGoogle Scholar
Saikin, S. K., Chu, Y., Rappoport, D., Crozier, K. B., Aspuru-Guzik, A., J. Phys. Chem. Lett. 1, 2740 (2010).CrossRefGoogle Scholar
Timur, S., Vaskevich, A., Rubinstein, I., and Haran, G., J. Am. Chem. Soc. 131, 14390 (2009).Google Scholar
Suzuki, M., Niidome, Y., Kuwahara, Y., Terasaki, N., Inoue, K., Yamada, S., J. Phys. Chem. B 108, 11660 (2004).CrossRefGoogle Scholar
Halas, N. J., Lal, S., Link, S., Chang, W. S., Natelson, D., Hafner, J. H., and Nordlander, P., Adv. Mater. 24, 4774 (2012).CrossRefGoogle Scholar
Cheng, F., Agarwal, A., Buddharaju, K. D., Khalid, N. M., Salim, S. M., Widjaja, E., Garland, M. V., Balasubramanian, N., and Kwong, D. L., Biosensors Bioelectron. 24, 216 (2008).CrossRefGoogle Scholar
Jin, M., Pully, V., Otto, C., van den Berg, A., and Carlen, E. T., J. Phys. Chem. C 114, 21953 (2010).CrossRefGoogle Scholar
Hatab, N. A. A., Oran, J. M., and Sepaniak, M. J., ACS Nano 2, 377 (2008).CrossRefGoogle Scholar
Karamehmedović, M., Schuh, R., Schmidt, V., Wriedt, T., Matyssek, C., Hergert, W., Stalmashonak, A., Seifert, G., and Stranik, O.. Opt. Express 19, 8939 (2011).CrossRefGoogle Scholar
Flatau, P. J., and Draine, B. T., Opt. Express, 20, 1247 (2012).CrossRefGoogle Scholar
Draine, B. T., and Flatau, P. J., J. Opt. Soc. Am. A 11, 1491 (1994).CrossRefGoogle Scholar
Chopra, N., Bachas, L. G., and Knecht, M. R.. Chem. Mater. 21, 1176 (2009).CrossRefGoogle Scholar
Wu, J., Shi, W., Chopra, N., J. Phys. Chem. C 116, 12861 (2012).CrossRefGoogle Scholar
Atanasov, P. A., Nedyalkov, N. N., Sakai, T., Obara, M.. Appl. Surf. Sci. 254, 794 (2005).CrossRefGoogle Scholar