Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:41:46.522Z Has data issue: false hasContentIssue false

Growth of Pr2O3 layers by pulsed injection MOCVD

Published online by Cambridge University Press:  28 July 2011

A. Abrutis
Affiliation:
Vilnius University, Dep. of General and Inorganic Chemistry, 24 Naugarduko, LT-2006 Vilnius, Lithuania
A. Bartasyte
Affiliation:
Vilnius University, Dep. of General and Inorganic Chemistry, 24 Naugarduko, LT-2006 Vilnius, Lithuania
A. Teiserskis
Affiliation:
Vilnius University, Dep. of General and Inorganic Chemistry, 24 Naugarduko, LT-2006 Vilnius, Lithuania
Z. Saltyte
Affiliation:
Vilnius University, Dep. of General and Inorganic Chemistry, 24 Naugarduko, LT-2006 Vilnius, Lithuania
P.K. Baumann
Affiliation:
AIXTRON AG, Kackertstr 15-17, 52072 Aachen, Germany
M. Schumacher
Affiliation:
AIXTRON AG, Kackertstr 15-17, 52072 Aachen, Germany
J. Lindner
Affiliation:
AIXTRON AG, Kackertstr 15-17, 52072 Aachen, Germany
T. McEntee
Affiliation:
AIXTRON AG, Kackertstr 15-17, 52072 Aachen, Germany
Get access

Abstract

Praseodymium oxide Pr2O3 (and Pr6O11) layers were deposited by innovative pulsed injection MOCVD technique on Si(100) in the temperature range 400-750°C. Praseodymium 2,2,6,6-tetramethyl-3,5-heptanedionate dissolved in monoglyme (1,2-dimethoxyethane) or toluene was used as precursor material. The influence of deposition conditions on film composition, growth rate, crystallization and surface roughness has been investigated. The main parameters influencing film composition and properties were substrate temperature and partial oxygen pressure during deposition. The presence of molecular oxygen in the reactor leads to the growth of Pr6O11 as the most stable phase or its mixture with PrO2, while deposition in inert atmosphere (Ar, 2 torr) allows to obtain Pr2O3 films which were amorphous or crystalline depending on the deposition temperature. Crystallized (polycrystalline) Pr2O3 films can be obtained at the growth temperatures 650°C and higher, while crystalline Pr6O11 films grow starting 400°C. Ex-situ annealing (750°C, vacuum, 2 hours) of the amorphous Pr2O3 films leads to film crystallization. Step coverage study has been performed for amorphous and crystallized Pr2O3 films. Electrical properties of thin (∼10 nm) Pr2O3 films were investigated and encouraging EOT (equivalent oxide thickness), leakage current data have been obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kingon, A.I., Maria, J-P., Streiffer, S.K.. Nature, 406 (2000) 1032.Google Scholar
2. Wilk, G.D.,Wallace, R.M., Anthony, J.M.. J. Appl. Phys., 89 (2001) 5243.Google Scholar
3. Osten, H. J., Liu, J. P., Gaworzewski, P., Bugiel, E., and Zaumseil, P., Tech. Dig. - Int. Electron Devices Meet., 2000, 653 Google Scholar
4. Adachi, G., Imanaka, N., Chem. Rev. (Washington, D.C.) 98 (1998) 1479.Google Scholar
5. Osten, H. J., Bugiel, E., Dabrowski, J., Fissel, A., Guminskaya, T., Liu, J. P., Mussig, H. J., and Zaumseil, P., IWGI Tokio, 2001, p. 100.Google Scholar
6. Osten, H. J., Fissel, A., Mussig, H. J., Schwalke, U., Boye, K., Haberle, K., Heller, R., Hess, G., Muller, G., Ruland, T., and Tzschockel, G., ESSDERC, 2002, 407.Google Scholar
7. Liu, J. P., Zaumseil, P., Bugiel, E., Osten, H.J., Appl. Phys. Lett. 79 (2002) 671.Google Scholar
8. Tarsa, E. J., Speck, J. S., Robinson, McD., Appl. Phys. Lett. 63 (1993) 539.Google Scholar
9. Fork, D. K., Fenner, D. B., Geballe, T. H., J. Appl. Phys. 68 (1990) 4316.Google Scholar
10. Osten, H.J., Liu, J.P., Bugiel, E., Mussig, H.J., Zaumseil, P.. J. Crys. Gr. 235 (2002) 229.Google Scholar
11. Nigro, R. Lo, Toro, R., Malandrino, G.,Raineri, V., Fragala, I.L.. Electrochem. Soc. Proc., v. 2003-2008, 915.Google Scholar
12. Nigro, R. Lo, Raineri, V., Bongiorno, C., Toro, R., Malandrino, G., Fragala, I.L.. Appl. Phys. Lett. 83 (2003) 129.Google Scholar
13. Senateur, J. P., Weiss, F., Thomas, O., Madar, R., Abrutis, A., Patent 93/08838 PCT FR94/00858 (Europe, USA).Google Scholar
14. Senateur, J. P., Abrutis, A., Felten, F., Weiss, F., Thomas, O., Madar, R.. In Advances in Inorganic Films and Coatings. Ed. Vincenzini, P., Techna srl., Italy, 1995, p. 161166.Google Scholar
15. Senateur, J. P., Dubourdieu, C., Galindo, V., Weiss, F., Abrutis, A., in Innovative processing of films and nanocrystalline powders, Ed. Choy, K.-L., Imp. Coll. Press, London, 2002, 71105.Google Scholar
16. Abrutis, A., Plausinaitiene, V., Kubilius, V., Teiserskis, A., Saltyte, Z., Butkute, R., Senateur, J.P.. Thin Solid Films, 413 (2002) 32 Google Scholar