Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:40:43.715Z Has data issue: false hasContentIssue false

Growth of Oriented Gallium Nitride Films on Amorphous Substrates by Self Assembly

Published online by Cambridge University Press:  11 February 2011

Hongwei Li
Affiliation:
Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, U.S.A.
Mahendra K. Sunkara
Affiliation:
Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, U.S.A.
Get access

Abstract

C-plane oriented thin films of gallium nitride (GaN) were grown on both amorphous quartz substrates and single crystalline c-sapphire substrates at sub-atmospheric pressures by exposing molten gallium thin films to electron cyclotron resonance (ECR) microwave generated nitrogen plasma. Gallium nitride crystals nucleated from molten gallium and self-aligned with respect to each other due to the mobility of nitrogenated gallium and formed textured film directly on amorphous substrates. Scanning electron microscopy (SEM) images and X-ray Diffraction (XRD) spectra confirmed the orientation among crystals. Micro-Raman spectra exhibited a FWHM of 3 cm−1. Self-assembled, nanocrystalline GaN thin films were obtained when spin-coated gallium thin films (< 1 μm) on quartz substrates were nitrided.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nakamura, S., Senoh, M, Mukai, T., Appl. Phys. Lett. 62, 2390 (1993)Google Scholar
[2] Morkoc, H., Mohammad, S. N., Science 267, 51(1995)Google Scholar
[3] Nakamura, S., Mat. Sci. Eng. B-Solid 43, 258(1997)Google Scholar
[4] Ponce, F.A., Bour, D. P., Nature 386, 351 (1997)Google Scholar
[5] Khan, M.A., Shur, M.S., Mat. Sci. Eng. B-Solid 46, 69(1997)Google Scholar
[6] Lee, C. R., Lee, I. -H., et al., J. Cryst. Growth, 182, 11(1997)Google Scholar
[7] Park, C. I., Lim, K. Y., et al., Thin Solid Films 401, 60 (2001)Google Scholar
[8] Xie, M.H., Tong, S.Y., et al., Phy. Rev. Letters, 82, 2749, (1999)Google Scholar
[9] Kim, E., Bensaoula, A., et al., J. Cryst. Growth, 243, 456(2002)Google Scholar
[10] Nikitina, I.P., Nikolaev, A.E., Melnik, Y.V., Diam. Relat. Mat., 6, 1532(1997)Google Scholar
[11] Motoki, K., Okahisa, T., kimura, H., Kimagai, Y., Seki, H., J. Cryst. Growth, 237–239, 912, (2002)Google Scholar
[12] Porowski, S., Grzegoty, I., J. Cryst. Growth, 178, 174(1997)Google Scholar
[13] Liu, L. and Edgar, J. H., Mat. Sci. Eng. R, 37, 61, (2002)Google Scholar
[14] Zheleva, T. S., Nam, O., Ashmawi, W. M., Griffin, J. D., Davis, R F., J. Cryst. Growth, 222, 706(2001)Google Scholar
[15] Davis, R. F., Gehrke, T., Linthicum, K. J., Zheleva, T. S., Preble, E. A., Rajagopal, P., Mehregany, M., J. Cryst. Growth, 225, 134(2001)Google Scholar
[16] Zauner, A.R.A., Aret, E., van Enckevort, W.J.P., Weyher, J.L., Porowski, S., Schermer, J.J., J. Cryst. Growth, 240, 14(2002)Google Scholar
[17] Porowski, S., J. Cryst. Growth, 166, 583(1996)Google Scholar
[18] Dyck, J.S., Angus, J.C., et al., Appl. Phys. Lett., 70, 179(1997)Google Scholar
[19] Angus, J.C., et al., MRS Internet J Nitride research, 4S1, G3.23 (1999)Google Scholar
[20] Madar, R., Jacob, G., hallais, J., Fruchart, R., J. Cryst. Growth, 31, 197(1975)Google Scholar
[21] Elwell, D., Feigelson, R.S., Simkins, M.M., Tiller, W.A., J. Cryst. Growth, 66, 45(1984)Google Scholar
[22] Chandrasekaran, H., Sunkara, M. K. in GaN and Related Alloys, edited by Northrup, J. E., Neugebauer, J., Look, D. C., Chichibu, S. F., Riechert, H., (MRS Symp. Proc., 693, Boston, MA, 2001) pp. 159164 Google Scholar
[23] Balkas, C.M., Sitar, Z., et.al, J. Cryst. Growth, 208, 100(2000)Google Scholar