Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:36:10.128Z Has data issue: false hasContentIssue false

Growth of (Ni,Zn)Fe2O4 Thin Films by Liquid Delivery Metal-Organic Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

A. I. Kingon
Affiliation:
North Carolina State University, Raleigh, NC 27695
T. H. Baum
Affiliation:
Advanced Technology Materials, Inc., 7 Commerce Dr., Danbury, CT 06810
Get access

Abstract

Ni,Zn-ferrite (NZF) thin films are of interest for high frequency applications because of their high saturation magnetization compared to garnet films and their low eddy current losses compared to metal alloy films. Therefore there is an increasing need for methods to deposit single crystal ferrite thin films for incorporation into next generation microwave devices.

Epitaxial thin films of NZF have been deposited by liquid delivery metal-organic chemical vapor deposition onto (100) oriented MgO substrates. The morphology, orientation and magnetic properties of the as-deposited films were investigated as a function of deposition temperature and pressure. X-ray diffraction (XRD) reveals highly oriented films with a film strain of 1.01% compared to bulk lattice parameters. Films with well saturated magnetic hysteresis were obtained under a number of conditions with values of saturation magnetization up to 270 emu/cc (3400 gauss) with relatively low coercive fields ~100 Oe. The influence of metal cation ratio on magnetic properties is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Guyot, M., A Lisfi, Krishnan, R., Porte, M., Rougier, P., Cagan, V., Appl. Sur. Sci. 96–98, 802 (1998)Google Scholar
2 Welch, R.G., Neamtu, J., Rogalski, M.S., Palmer, S. B., Solid State Comm 97, 355 (1996)10.1016/0038-1098(95)00662-1Google Scholar
3 Amado, M.M., Rogalski, M.S., Guimaraes, L., Sousa, J.B., Bibicu, I., Welch, R.G., Palmer, S.B., J. Appl. Pgys. 83, 6852 (1998)Google Scholar
4 Zhang, Q., Itoh, T., Abe, M. Tamaura, Y., .J. Appl. Phys. 73, 6284 (1993)10.1063/1.352671Google Scholar
5 De Marco, M., Wang, X.W., Snider, R.L., Simmins, J., Bayya, S., White, M., Naughton, M.J., J.Appl.Phys. 73 6287 (1993)10.1063/1.352672Google Scholar
6 Pal, M., Brahma, P., Chakravorty, D., Bhattacharyya, D., Maiti, H.S., J. Magn. Magn. Mater. 164 256 (1996)10.1016/S0304-8853(96)00325-3Google Scholar
7 Roeder, J.F., Bilodeau, S.M., Carl, R.J. Jr, Baum, T.H., Van Buskirk, P.C., Woolcott, R.R. Jr, Kingon, A.I., Proc. Mater. Res. Soc. Symp. 419 21 (1997)10.1557/PROC-474-21Google Scholar
8 Introduction to Ceramics, Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., New York: Wiley (1976): 1009.Google Scholar
9 Suzuki, Y., van Dover, R.B., Gyorgy, E.M., Phillips, J.M., Kerenivski, V., Werder, D.J., Chen, C.H., Cava, R.J., Krajewski, J.J., Peck, W.F., Jr, Do, K.B., Appl. Phys. Lett. 66 714 (1996)10.1063/1.116601Google Scholar
10 Venzke, S., van Dover, R.B., Phillips, J.M., Gyorgy, E.M., Siegrist, T., Chen, C- H., Werder, D., Fleming, R.M., Felder, R.J., Coleman, E., Opila, R., J. Mater. Res., 66 1187 (1996)10.1557/JMR.1996.0153Google Scholar
11 Williams, C.M., Chrisey, D.B., Lubitz, P., Grabowski, K.S., Cotell, C.M., J. Appl. Phys. 75, 1676 (1994)10.1063/1.356353Google Scholar
12 Chatterjee, A., Das, D., S.K Pradhan, M., Chakravorty, D., J. Magn. Magn. Mater. 127, 214 (1993)10.1016/0304-8853(93)90217-PGoogle Scholar
13 Pal, M., Brahma, P., Chakravorty, D., Bhattacharyya, D., Maiti, H.S., J. Magn. Magn. Mater. 164, 256 (1996)10.1016/S0304-8853(96)00325-3Google Scholar
14 C.J. Chen, Bridger, K., Winzer, S.R., PaiVemeker, V., J. Appl. Phys. 63 3786 (1988)10.1063/1.340852Google Scholar
15 UA-RBS, an RBS simulation software developed by Dr. Laurence McIntyre at the University of Arizona.Google Scholar
16 Kingon, A.I. and Clark, J B, J. Am. Ceram. Soc. 66[4] 253 (1983)10.1111/j.1151-2916.1983.tb15708.xGoogle Scholar