Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T00:38:08.099Z Has data issue: false hasContentIssue false

Growth of mirror-like Zn1−xMnxO diluted magnetic semiconductor thin films by r.f. magnetron sputtering method

Published online by Cambridge University Press:  15 March 2011

Sejoon Lee
Affiliation:
Quantum-functional Semiconductor Research Center, Dongguk University3-26 Phil-dong, Chung-gu, Seoul 100-715, KOREA
Hye Sung Lee
Affiliation:
Quantum-functional Semiconductor Research Center, Dongguk University3-26 Phil-dong, Chung-gu, Seoul 100-715, KOREA
Deuk Young Kim*
Affiliation:
Quantum-functional Semiconductor Research Center, Dongguk University3-26 Phil-dong, Chung-gu, Seoul 100-715, KOREA
*
*Corresponding Author. E-mail Address: [email protected]
Get access

Abstract

The Zn1−xMnxO thin films were grown on Al2O3 (0001) substrates by an r.f. magnetron sputtering method. The film grown with employing buffer layer shows mirror-like surface, while the film grown without buffer layer shows the columnar-structured configuration. The mirror-like Zn0.93Mn0.07O thin films have the single crystalline phase with (000ℓ) orientation normal to the substrate surface and show the UV emission originated from the near band-edge-emission for the measurements of x-ray diffraction and photoluminescence, respectively. The mirror-like Zn0.93Mn0.07O film clearly showed a hysteresis loop, which is obvious evidence of ferromagnetism, and the Curie temperature was determined to be 68 K for the characterization of the temperature-dependent magnetization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ohno, H., Science 281, 951 (1998).Google Scholar
2. Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., Molnár, S. von, Roukes, M. L., Chtchelkanova, A. Y., and Treger, D. M., Science 294, 1488 (2001).Google Scholar
3. Bagnall, D. M., Chen, Y.F., Zhu, Z., Yao, T., Koyama, S., Shen, M.Y., Goto, T., Appl. Phys. Lett. 70, 230 (1997).Google Scholar
4. Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P., Science 292, 897 (2001).Google Scholar
5. ork, M. T. Bj., Ohlsson, B.J., Sass, T., Persson, A.I., Thelander, C., Magnusson, M.H., Deppert, K., Wallenberg, L.R., Samuelson, L., Appl. Phys. Lett. 80, 1058 (2002).Google Scholar
6. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019 (2000).Google Scholar
7. Norton, D. P., Pearton, S. J., Hebard, A. F., Theodoropoulou, N., Boatner, L. A., and Wilson, R. G., Appl. Phys. Lett. 82, 239 (2003).Google Scholar
8. Jung, S. W., An, S-J., Yi, G. C., Jung, C. U., Lee, S-I., and Cho, S., Appl. Phys. Lett. 80, 4561 (2002).Google Scholar
9. Kim, D. S., Lee, S., Min, C., Kim, H. –M., Yuldashev, S. U., Kang, T. W., Kim, D. Y., and Kim, T. W., Jpn. J. Appl. Phys. 42, 7217 (2003).Google Scholar
10. An, S.-J., Park, W.I., Yi, G.-C., and Cho, S., Appl. Phys. A 74, 509 (2002).Google Scholar
11. Fukumura, T., Jin, Z., Ohtomo, A., Koinuma, H., and , Kawasaki, Appl. Phys. Lett. 75, 3366 (1999).Google Scholar
12. Wang, J., Du, G., Zhang, Y., Zhao, B., Yang, X., and Liu, D., J. Crystal Growth 263, 269 (2004).Google Scholar