Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:26:41.825Z Has data issue: false hasContentIssue false

Growth of Hydrogenated Amorphous Silicon (A-Si:H) on Patterned Substrates for Increased Mechanical Stability

Published online by Cambridge University Press:  21 February 2011

Wan-Shick Hong
Affiliation:
Physics Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, U.S.A.
J. C. Delgado
Affiliation:
Dept. de Física Aplicada i Electrònica, Universitat de Barcelona, Barcelona, Spain
O. Ruiz
Affiliation:
Dept. de Física Aplicada i Electrònica, Universitat de Barcelona, Barcelona, Spain
V. Perez-Mendez
Affiliation:
Physics Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, U.S.A.
Get access

Abstract

Residual stress in hydrogenated amorphous silicon (a-Si:H) film has been studied. Deposition on square island pattern reduced the stress when the lateral dimension of the islands became comparable to the film thickness. The overall stress was reduced by approximately 40% when the lateral dimension was decreased to 40 μm, but the adhesion was not improved much. However, substrates having a 2-dimensional array of inversed pyramids of 200 μm in lateral dimension produced overall stress 3∼4 times lower than that on the normal substrates. The inversed pyramid structure also had other advantages including minimized delamination and increased effective thickness. Computer simulation confirmed that the overall stress can be reduced by deposition on the pyramidal structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Perez-Mendez, V., Cho, G., Drewery, J., Jing, T., Kaplan, S.N., Qureshi, S., Wildermuth, D., Goodman, C., Fujieda, I. and Street, R.A., Nucl. Phys. B, 32, 287 (1993)Google Scholar
2) Equer, B. and Kara, A., Nucl. Instr. Meth., A271, 574 (1988)Google Scholar
3) Dubeau, J., Pochet, T., Karar, A., Hamel, L.A., Equer, B., Martin, J.P., Gujrathi, S.C. and Yelon, A. in Amorphous Silicon Technology, edited by Madan, A., Thompson, M.J., Taylor, P.C., LeComber, P.G., Hamakawa, Y. (Mater. Res. Soc. Proc. 118, Pittsburgh, PA, 1988) pp.439444.Google Scholar
4) Drewery, J.S., Cho, G., Fujieda, I., Jing, T., Kaplan, S.N., Perez-Mendez, V. and Wildermuth, D., Nucl. Instr. Meth. A310, 165 (1991)Google Scholar
5) Kakinuma, H., Nishikawa, S., Watanabe, T. and Nihei, K., J. Appl. Phys. 59 9 3110 (1986)Google Scholar
6) Harbison, J.P., Williams, A.J. and Lang, D.V., J. Appl. Phys. 55 4 946 (1984)Google Scholar
7) Stevens, K.S. and Johnson, N.M., J. Appl. Phys. 71 6 2628 (1992)Google Scholar
8) Johnson, N.M., Ponce, F.A., Street, R.A. and Nemanich, R.J., Phys. Rev. B35 8 4166 (1987)Google Scholar
9) MJohnson, N., Doland, C., Ponce, F., Walker, J. and Anderson, G., Physica B, 170, 3 (1991)Google Scholar
10) Street, R.A., Hydrogenated Amorphous Silicon. (Cambridge Univ. Press, Cambridge, 1991),Google Scholar
11) Stoney, G., Proc. Roy. Soc. London Ser. A, 82, 172 (1909)Google Scholar
12) Qureshi, S., Perez-Mendez, V., Kaplan, S.N., Fujieda, I., Cho, G. and Street, R.A., IEEE Trans. Nucl. Sci. 361 1 194(1989)Google Scholar
13) Spear, W.E. and Heinze, M., Phil. Mag. B, 54 5 343 (1986)Google Scholar
14) Hishikawa, Y., J. Appl. Phys. 62 8 3150 (1987)Google Scholar
15) Yamaguchi, M., Tachikawa, M., Sugo, M., Kondo, S. and Itoh, Y., Appl. Phys. Lett. 56 1 27 (1990)Google Scholar
16) Yacobi, B., Zemon, S., Norris, P. and Jagannath, C. Sheldon, P., Appl. Phys. Lett. 51 26 2236 (1987)Google Scholar
17) Suhir, E., J. Appl. Mech. 53 657 (1986)Google Scholar
18) Qureshi, S., Hydrogenated Amorphous Silicon Radiation Detectors: Material Parameters: Radiation Hardness: Charge Collection. Ph.D. Thesis, Univ. of Calif., Berkeley, (1991)Google Scholar