Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-04T21:19:58.309Z Has data issue: false hasContentIssue false

Growth of High Al Concentration AlGaN for Solar Blind Photodetector Applications

Published online by Cambridge University Press:  21 March 2011

Shiping Guo*
Affiliation:
EMCORE Corporation, 145 Belmont Drive, Somerset, NJ 08873, U.S.A.
Milan Pophristic
Affiliation:
EMCORE Corporation, 145 Belmont Drive, Somerset, NJ 08873, U.S.A.
Ian Ferguson
Affiliation:
EMCORE Corporation, 145 Belmont Drive, Somerset, NJ 08873, U.S.A. Georgia Institute of Technology, School of Electrical and Computer Engineering Atlanta, GA 30332, U.S.A.
Boris Peres
Affiliation:
EMCORE Corporation, 145 Belmont Drive, Somerset, NJ 08873, U.S.A.
Phil Lamarre
Affiliation:
BAE SYSTEMS, Lexington, MA 02421, and Nashua, NH 03060, U.S.A.
Steve Tobin
Affiliation:
BAE SYSTEMS, Lexington, MA 02421, and Nashua, NH 03060, U.S.A.
Kwok Wong
Affiliation:
BAE SYSTEMS, Lexington, MA 02421, and Nashua, NH 03060, U.S.A.
Marion Reine
Affiliation:
BAE SYSTEMS, Lexington, MA 02421, and Nashua, NH 03060, U.S.A.
Ashok Sood
Affiliation:
BAE SYSTEMS, Lexington, MA 02421, and Nashua, NH 03060, U.S.A.
*
*corresponding author: [email protected]
Get access

Abstract

The development of a metalorganic chemical vapor deposition growth process for AlxGa1-xN materials with high aluminum composition (x∼0.40-0.60) on sapphire substrates is reported. Room temperature Hall measurements of Si-doped AlGaN epilayers with x∼0.40 show a narrow window for efficient doping with a carrier concentration of ∼1.5x1018 cm-3 and a mobility of ∼35 cm2/V-s obtained under optimum growth conditions. AlxGa1-xN-based solar-blind p-i-n device structures were grown and diode I-V curves were obtained with a high R0A of <2.9×1010 ohm-cm2. Secondary ion mass spectroscopy measurements show a sharp transition between regions of high concentration of Mg (2×1020 cm-3) and Si (1×1019 cm-3) in p-GaN and n-AlGaN layers, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Mukai, T., Senoh, M., Nagahama, S., Iwasa, N., J. Appl. Phys. 74, 3911 (1993).Google Scholar
2. Nakamura, S., Senoh, M., Iwasa, N. and Nagahama, S., Appl. Phys. Lett. 67, 1868 (1995).10.1063/1.114359Google Scholar
3. Ambacher, O., Foutz, B., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Sierakowski, A. J., Schaff, W. J., and Eastman, L. F., J. Appl. Phys. 87, 334 (2000).10.1063/1.371866Google Scholar
4. Nishida, T., Saito, H., and Kobayashi, N., Appl. Phys. Lett. 78, 3927 (2001).Google Scholar
5. Lambert, D. J., Wong, M. M., Chowdhury, U., Colins, C., Li, T., Kown, H. K., Shelton, B. S., Zhy, T. G., Campbell, J. C., and Dupuis, R., Appl. Phys. Lett. 77, 1900 (2000).10.1063/1.1311821Google Scholar
6. Brown, J.D., Yu, Z., Matthews, J., Harney, S., Boney, J., Schetzina, J.F., Benson, J.D., Dang, K.W., Terrill, C., Nahova, T., Yang, W., Krishnankutty, S., MRS Internet J. Nitride Semicond. Res. 4, 9 (1999).10.1557/S109257830000065XGoogle Scholar
7. Lamarre, P., Hairston, A., Tobin, S., Wong, K. K., Taylor, M. F., Sood, A. K., Reine, M. B., Schurman, M. J., Ferguson, I. T., Singh, R. and Eddy, C. R. Jr, GaN and Related Alloys-2000, Mat. Res. Soc. Symp. Proc. 639, p. G10.9.1 (2001).Google Scholar
8. Jain, S.C., Willander, M., Narayan, J., Overstraeten, R. Van, J. Appl. Phys. 87, 965 (2000).10.1063/1.371971Google Scholar
9. Stampfl, C., Walle, C. G. Van de, Appl. Phys. Lett. 72, 459 (1998).Google Scholar
10. Waldrip, K.E., Han, J., Figiel, J.J., Zhou, H., Makarona, E., Nurmikko, A.V., Appl. Phys. Lett. 78, 3205 (2001).10.1063/1.1371240Google Scholar
11. Tarsa, E.J., Kozodoy, P., Ibbetson, J., Keller, B.P., Parish, G., Mishra, U., Appl. Phys. Lett. 77, 316 (2000).10.1063/1.126962Google Scholar