Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T23:03:55.675Z Has data issue: false hasContentIssue false

Growth of Heterojunction Bipolar Transistors by Metalorganic Molecular Beam Epitaxy

Published online by Cambridge University Press:  22 February 2011

Cammy R. Abernathy*
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave. Murray Hill, NJ 07974
Get access

Abstract

Heterojunction bipolar transistors (HBTs) are becoming increasingly important for highspeed electronic applications. This paper will discuss how the unique growth chemistry of metalorganic molecular beam epitaxy (MOMBE) can be used to produce high performance HBTs. For example, it has been well documented that MOMBE's ability to grow heavily doped, well-confined layers of either n- or p-type is a significant advantage for this device. This feature arises primarily from the ability to use gaseous dopant sources in the absence of interfacial gas boundary layers. While this is an advantage for doping, it can be a disadvantage in other areas such as AlGaAs purity or InGaP lattice matching. This paper will discuss how these difficulties can be overcome through the use of novel Al or Ga precursors thus allowing deposition of high quality GaAs-based HBTs. By using trimethylamine alane (TMAA), background impurity concentrations can be reduced substantially. Further improvements in purity require cleaner Ga precursors or alternatively novel Ga substitutes. The resulting reduction in compensation allows for the use of lower dopant concentrations in the AlGaAs thus producing significant improvement in the leakage behavior of the base-emitter junction. Even further improvement can be achieved through the use of InGaP. Using novel Ga precursors, such as tri-isobutylgallium (TIBG), the problems associated with the sensitivity of composition to growth temperature are greatly reduced, allowing for the reproducible deposition of devices containing InGaP emitter layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ren, F., Abernathy, C. R., Pearton, S. J., J. Appl. Phys. 70, 2885 (1991).Google Scholar
2. Ren, F., Abernathy, C. R., Pearton, S. J., Fullowan, T. R., Lothian, J. R., Wisk, P. W., Chen, Y. K., Hobson, W. S., Smith, P., Electron. Lett. 27, 2391 (1991).Google Scholar
3. Konagai, M., Yamada, T., Akatsuka, A., Saito, K., Tokumitsu, E., and Takahashi, K., J. Crystal Growth 105, 359 (1990).Google Scholar
4. Abernathy, C. R., Pearton, S. J., Ren, F., Hobson, W. S., Fullowan, T. R., Katz, A., Jordan, A. S., and Kovalchick, J., J. Crystal Growth 105, 375 (1990).Google Scholar
5. Saito, K., Tokumitsu, E., Akatsuka, T., Miyauchi, M., Yamada, T., Konagai, M., and Takahashi, K., J. Appl. Phys. 64, 3975 (1988).Google Scholar
6. Abernathy, C. R., Pearton, S. J., Baiocchi, F. A., Ambrose, T., Jordan, A. S., Bohling, D. A., and Muhr, G. T., J. Crystal Growth 110, 457 (1991);Google Scholar
7. Ozasa, K., Yuri, M., Tanaka, S., and Matsunami, H., J. Appl. Phys. 65, 2711, (1989).Google Scholar
8. Benchimol, J. L., LeRoux, G., Thibierge, H, Daguet, C., Alexandre, F. and Brilloult, F., J. Crystal Growth 107, 978 (1991).Google Scholar
9. Garcia, J. C., Maurel, P., Bove, P., Hirtz, J. P. and Barski, A., J. Crystal Growth 111, 578 (1991).Google Scholar
10. Ren, F., Abernathy, C. R., Pearton, S. J., Fullowan, T. R., Lothian, J., and Jordan, A. S., Electron. Lett. 26, 724 (1990).Google Scholar
11. Abernathy, C. R., Jordan, A. S., Pearton, S. J., Hobson, W. S., Bohling, D. A, and Muhr, G. T., Appl. Phys. Lett. 56, 2654 (1990).Google Scholar
12. Abernathy, C. R., Pearton, S. J., Bohling, D. A., and Muhr, G. T., J. Crystal Growth 111, 564 (1991).Google Scholar
13. Abernathy, C. R., Wisk, P. W., Jones, A. C., and Rushworth, S. A., Appl. Phys. Lett. 61, 180 (1992).Google Scholar
14. Lane, P. A., Martin, T., Freer, R. W., Calcott, P. D. J., Whitehouse, C. R., Jones, A. C., and Rushworth, S., Appl. Phys. Lett. 61, 285 (1992).Google Scholar
15. Abernathy, C. R., J. Vac. Sci. Tech. B, Sept/Oct 1993.Google Scholar
16. Kroemer, H., IEEE Proc. 70, 13 (1982).Google Scholar
19. Alexandre, F., Benchimol, J. L., Dangla, J., Dubon-Chevallier, A., and Amarger, V., Electron. Lett. 26, 1753 (1990).Google Scholar
20. Ren, F., Abernathy, C. R., Pearton, S. J., Wisk, P. W., and Esagui, R., Electron. Lett. 28, 1150 (1992).Google Scholar
21. Benchimol, J. L., Alexandre, F., Dubon-Chevallier, C., Hiliot, F., Bourguiga, R., Dangla, J., and Sermagi, B., Electron. Lett. 28, 1344 (1992)..Google Scholar
22. Ren, F., Abernathy, C. R., Pearton, S. J., Lothian, J. R., Chu, S. N. G., Wisk, P. W., Fullowan, T. R., Tseng, B., and Chen, Y. K., Electron. Lett.Google Scholar
23. Martin, T. R. and Whitehouse, C. R., J. Crystl Growth 105, 57 (1990).Google Scholar
24. Stringfellow, G. B., Organometallic Vapor Phase Epitaxy: Theory and Practice, Academic Press, Boston, MA, 1989.Google Scholar
25. Foord, J. S., Singh, N. K., Fitzgerald, E. T., Davies, G. J., and Jones, A. C., J. Crystal Growth 120, 103 (1992).Google Scholar
26. Benchimol, J. L., Alaoui, F., Gao, Y., Roux, G. Le, Rao, E. V. K., and Alexandre, F., J. Crystal Growth 105, 135 (1990).Google Scholar