Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:56:02.842Z Has data issue: false hasContentIssue false

Growth of GaN Thin Films on Sapphire Substrate by Low Pressure MOCVD

Published online by Cambridge University Press:  10 February 2011

M. Ishida
Affiliation:
Electronics Research Lab., Matsushita Electronics Corporation, Osaka 569, Japan, [email protected]
T. Hashimoto
Affiliation:
Electronics Research Lab., Matsushita Electronics Corporation, Osaka 569, Japan, [email protected]
T. Takayama
Affiliation:
Electronics Research Lab., Matsushita Electronics Corporation, Osaka 569, Japan, [email protected]
O. Imafuji
Affiliation:
Electronics Research Lab., Matsushita Electronics Corporation, Osaka 569, Japan, [email protected]
M. Yuri
Affiliation:
Electronics Research Lab., Matsushita Electronics Corporation, Osaka 569, Japan, [email protected]
A. Yoshikawa
Affiliation:
Electronics Research Lab., Matsushita Electronics Corporation, Osaka 569, Japan, [email protected]
K. Itoh
Affiliation:
Electronics Research Lab., Matsushita Electronics Corporation, Osaka 569, Japan, [email protected]
Y. Terakoshi
Affiliation:
Department of Electrical Engineering, Osaka Univ., Osaka 565, Japan
T. Sugino
Affiliation:
Department of Electrical Engineering, Osaka Univ., Osaka 565, Japan
J. Shirafuji
Affiliation:
Department of Electrical Engineering, Osaka Univ., Osaka 565, Japan
Get access

Abstract

High quality GaN films are grown on sapphire(0001) substrates by low pressure MOCVD using TMG and NH3 as source materials. Effects of surface nitridation and buffer layer thickness on the quality of over-grown GaN films are investigated. It is revealed by atomic force microscope (AFM) observations that surface roughness of the annealed buffer layers strongly depends on the nitridation time. Dislocation density and surface morphology of the high temperature GaN layer depend on the buffer layer thickness. It is found that sufficient surface nitridation of sapphire makes the buffer layer just prior to the high temperature growth very smooth, which is essential to obtain flat thick-GaN on it. It is also found that thickness of the buffer layer largely influences the dislocation density in the over-grown thick GaN. In order to obtain good surface morphology and low dislocation density at the same time, both nitridation time and buffer layer thickness must be optimized.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T., and Mukai, T., Jpn. J. Appl. Phys. 34, L1332 (1995).Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. Phys. Lett. 69, 4056 (1996).Google Scholar
3. Itaya, K., Onomura, M., Nishio, J., Sugiura, L., Saito, S., Suzuki, M., Rennie, J., Nunoue, S., Yamamoto, M., Fujimoto, H., Kokubun, Y., Ohba, Y., Hatakoshi, G., and Ishikawa, M., Jpn. J. Appl. Phys. 35, L1315 (1996).Google Scholar
4. Khan, M. A., Shur, M. S., Kuznia, J. N., Chen, Q., Burm, J., and Schaff, W. J., Appl. Phys. Lett. 66, 1083 (1995).Google Scholar
5. Matsuoka, T., Photoluminescence of InN and InGaN, in Properties of Group III Nitrides, edited by Eddgar, J. H., (INSPEC IEE, London, 1994), p. 231.Google Scholar
6. Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys Lett. 48, 353 (1986).Google Scholar
7. Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
8. Uchida, K., Watanabe, A., Yano, F., Kouguchi, M., Tanaka, T., and Minagawa, S., Solid State Electron. 41, 135 (1997).Google Scholar
9. Wu, X. H., Fini, P., Keller, S., Tarsa, E. J., Heying, B., Mishra, U. K., DenBaars, S. P., and Speck, J. S., Jpn. J. Appl. Phys. 35, L1648 (1996).Google Scholar