Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T18:00:46.240Z Has data issue: false hasContentIssue false

Growth of GaN, AlN and InN by Electron Cyclotron Resonance-Metal Organic Molecular Beam Epitaxy

Published online by Cambridge University Press:  22 February 2011

P. W. Wisk
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. R. Lothian
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
A. Katz
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
K. Jones
Affiliation:
University of Florida, Gainsville, FL
Get access

Abstract

We have investigated the feasibility of depositing GaN, AIN and InN from nitrogen plasmas by electron cyclotron resonance-metal organic molecular beam epitaxy (ECR-MOMBE). Growth rate, morphology, and resistivity were evaluated as function of growth temperature and group IB flux. It was found that stoichiometric materials could be deposited at reasonable growth rates on either GaAs or sapphire substrates. Low contact resistance, ∼5 × 10−7 Ω-cm2, can be obtained on In due to the high carrier concentrations, 1020 cm−3 obtained in this material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example, Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B, 1992 pp. 12371266, and references therein.Google Scholar
2. Tansley, T. L. and Egan, R. J., Mat. Res. Soc Symp. Proc. Vol. 242, 395 (1992).Google Scholar
3. Matsuoka, T., Crystal Growth, J., in press, and references therein.Google Scholar
4. Hoke, W. E., Lemonias, P. J. and Weir, D. G., J. Crystal Growth 111, 1024 (1991).Google Scholar
5. Paisley, M. J., Sitar, Z., Posthill, J. B. and Davis, R. F., J. Vac. Sci. Technol. A7, 701 (1989).Google Scholar
6. Strite, S., Ruan, J., Li, Z., Manning, N., Salvador, A., Chen, H., Smith, D. J., Choyke, W. J. and Morkoc, H., J. Vac. Sci. B9, 1924 (1991).Google Scholar
7. Abernathy, C. R., Pearton, S. J., Ren, F. and Wisk, P. W., J. Vac. Sci. Technol., in press.Google Scholar
8. Pearton, S. J., Abernathy, C. R., Ren, F., Lothian, J. R., Wisk, P. W., Katz, A., Elect. Lett., in press.Google Scholar
9. Pearton, S. J., Aberanthy, C. R., Ren, F., Lothian, J. R., Wisk, P. W., Katz, A., Elect. Lett., in press.Google Scholar
10. Abernathy, C. R., Wisk, P. W., Pearton, S. J. and Ren, F., J. Vac. Sci. Technol. B, 10, 2153 (1992).Google Scholar
11. Osamura, K., Naka, S. and Mokakami, Y., J. Appl. Phys. 46, 3432 (1975).Google Scholar
12. Nakamura, S., Senoh, M. and Moka, T., Jpn. J. Appl. Phys. 2883 (1992).Google Scholar
13. Kubata, K., Kobayashi, Y. and Fujimoto, K., J. Appl. Phys. 66, 2984 (1989).Google Scholar
14. Sullivan, B. T., Parsons, R. R., Westra, K. L. and Brett, M. J., J. Appl. Phys. 64, 4144 (1958).Google Scholar