Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T02:36:30.333Z Has data issue: false hasContentIssue false

Growth of GaAs and GaP from TMG: A Comparison

Published online by Cambridge University Press:  26 February 2011

Markus Eyers
Affiliation:
NTT Basic Research Laboratories, 3–9–11 Midori-cho, Musashino-shi, Tokyo 180, Japan
Michio Sato
Affiliation:
NTT Basic Research Laboratories, 3–9–11 Midori-cho, Musashino-shi, Tokyo 180, Japan
Get access

Abstract

In the growth of GaAs and GaP from TMG strong differences are observed. Although the shape of the Arrhenius plot of the growth rate is similar, at low deposition temperatures the GaP growth rate is lower than that of GaAs. Additionally, more carbon is incorporated into GaP than into GaAs. Mass spectrometric studies on methyl desorption show that As has a stronger ability to aid the breaking of the final Ga-carbon bond than P.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Martin, T. and Whitehouse, C. R., J. Crystal Growth 105, 57 (1990);CrossRefGoogle Scholar
Foxon, C.T., J. Crystal Growth 105, 87;CrossRefGoogle Scholar
Weyers, M., Progress in Crystal Growth & Characterization 19, 83 (1989);CrossRefGoogle Scholar
Stringfellow, G. B., Organometallic Vapor-Phase Epitaxy: Theory and Practice, (Academic Press, San Diego, 1989).Google Scholar
2. Brauers, A., J. Crystal Growth 107, 281 (1991);CrossRefGoogle Scholar
Weyers, M., J. Crystal Growth 107 1021;CrossRefGoogle Scholar
Pütz, N., Heinecke, H., Weyers, M., Heyen, M., Lüth, H. and Balk, P., J. Crystal Growth 74, 292 (1986).CrossRefGoogle Scholar
3. Pütz, N., Veuhoff, E., Heinecke, H., Heyen, M., Lüth, H. and Balk, P., J. Vac. Sci. Technol. B3, 671 (1985).CrossRefGoogle Scholar
4. Werner, K., Heinecke, H., Weyers, M., Lüth, H. and Balk, P., J. Crystal Growth 81, 281 (1987);CrossRefGoogle Scholar
Tu, C. W., Liang, B. W. and Chin, T. P., J. Crystal Growth, 105, 195 (1990).CrossRefGoogle Scholar
5. Sato, M. and Weyers, M., Jpn. J. Appl. Phys. 30, L1911 (1991).CrossRefGoogle Scholar
6. Behet, M., Brauers, A. and Balk, P., J. Crystal Growth 107, 209 (1991).CrossRefGoogle Scholar
7. Weyers, M. and Sato, M., submitted for publication.Google Scholar
8. Kobayashi, N., Yamauchi, Y. and Horikoshi, Y., J. Crystal Growth, in press;Google Scholar
Kobayashi, N. and Horikoshi, Y., Jpn. J. Appl. Phys. 30, L319 (1991).CrossRefGoogle Scholar
9. de Lyon, T. J., Woodall, J. M., Kirchner, P. D., Mclnturff, D. T., Scilla, G. J. and Cardone, F., J. Vac. Sci. Technol. B9, 136 (1991).CrossRefGoogle Scholar
10. Weyers, M. and Shiraishi, K., submitted for publicationGoogle Scholar