Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:13:49.719Z Has data issue: false hasContentIssue false

Growth of Fe/ZnSe Multilayers on GaAs (001) AND (111) by Molecular Beam Epitaxy

Published online by Cambridge University Press:  15 February 2011

H. Abad
Affiliation:
National Research Council Postdoctoral Associate
B. T. Jonker
Affiliation:
Naval Research Laboratory, Washington, D. C., 20375-5343.
C. M. Cotell
Affiliation:
Naval Research Laboratory, Washington, D. C., 20375-5343.
S. B. Qadri
Affiliation:
Naval Research Laboratory, Washington, D. C., 20375-5343.
J. J. Krebs
Affiliation:
Naval Research Laboratory, Washington, D. C., 20375-5343.
Get access

Abstract

The growth of Fe/ZnSe/Fe multilayers on (001) and (111) GaAs substrates is reported. The samples were characterized in-situ by reflection high energy electron diffraction (RHEED), and ex situ by vibrating sample magnetometry (VSM), ferromagnetic resonance (FMR), cross sectional transmission electron microscopy (TEM), and x-ray diffraction. On the (001) surface, the quality of the layers deteriorated significantly with the growth of the first ZnSe spacer layer. In Fe/ZnSe/Fe trilayer structures, TEM revealed a well-defined layered structure, with a high density of defects in both the ZnSe spacer layer and the subsequent Fe layer. VSM and FMR clearly showed the presence of two Fe films with distinct coercive fields, with the higher coercive field attributed to the lower crystalline quality of the second Fe layer. θ-2θ xray diffraction measurements performed on samples grown on (001) GaAs substrates indicated that the ZnSe spacer layer (grown on (001) Fe) grew in a (111) orientation. Growth on GaAs(111) substrates produced better RHEED patterns for all layers with little deterioration in film quality with continued layer growth, so that the magnetic properties of the individual Fe layer could not be distinguished.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.See for example Ultra Thin Magnetic Structures II, edited by Heinrich, B. and Bland, J. A. C. (Springer-Verlaag, Berlin, 1994), chap. 2.; and Magnetic Ultrathin Films, edited by B. T. Jonker, S. A.. Chambers, R. F. C. Farrow et al. (Materials Research Society, Pittsburgh, 1993) vol. 313.Google Scholar
2. Mattson, J. E., Kumar, Sodha, Fullerton, Eric E., Lee, S. R., Sowers, C. H., Grimsditch, M., Bader, S. D., and Parker, F. T., Phys. Rev. Lett., 71, 185, (1993).Google Scholar
3. Briner, B. and Landolt, M., Phys. Rev. Lett., 73, 340, (1994).Google Scholar
4. Inomata, K., Yusu, K., and Saito, Y., Phys. Rev. Lett., 74, 1863, (1995)Google Scholar
5. Krebs, J. J., Jonker, B. T., and Prinz, G. A., J. Appl. Phys. 61, 3744 (1987); B. T. Jonker, J. J. Krebs, G. A. Prinz and S. B. Qadri, J. Cryst. Growth 81, 524, (1987).Google Scholar
6. Jonker, B. T. and Prinz, G. A., J. Appl. Phys. 69, 2938, (1991); B. T. Jonker, G. A. Prinz and Y. U. Idzerda, J. Vac. Sci. Technol. B 9, 2437, (1991).Google Scholar
7. Fang, S. F., Adomi, K., Lyer, S., Morkoc, H., Zabel, H., Choi, C., and Otsuka, N., J. Appl. Phys., 68, R31, (1990).Google Scholar
8. Gaines, J. M., Petruzzello, J., and Greenberg, B., J. Appl. Phys., 73, 2835, (1993).Google Scholar
9. Abad, H., Jonker, B. T., Cotell, C. M. and Krebs, J. J., J. Vac. Sc. Tech. B 13, 716, (1995).Google Scholar