Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:39:06.580Z Has data issue: false hasContentIssue false

Growth of Epitaxial Potassium Niobate Film on (100)SrRuO3/(100)SrTiO3 by Hydrothermal Method and their Electromechanical Properties

Published online by Cambridge University Press:  01 February 2011

Mutsuo Ishikawa
Affiliation:
[email protected], Tokyo Institute of Technology, Yokohama, Japan
Shintaro Yasui
Affiliation:
[email protected], Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
Satoshi Utsugi
Affiliation:
[email protected], Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
Takashi Fujisawa
Affiliation:
[email protected], Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
Tomoaki Yamada
Affiliation:
[email protected], Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
Takeshi Morita
Affiliation:
[email protected], The University of Tokyo, Kashiwa, Japan
Minoru Kurosawa
Affiliation:
[email protected], Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
Hiroshi Funakubo
Affiliation:
[email protected], Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
Get access

Abstract

Epitaxaially-grown KNbO3 thick films over 8 μm in thickness were successfully grown at 220 °C for 6 h on (100)cSrRuO3//SrTiO3 substrates by a hydrothermal method. Epitaxial SrRuO3 layers grown on (100)cSrTiO3 substrates by sputter method were used as bottom electrode layers. Relative dielectric constant and the dielectric loss were 530 and 0.11, respectively. Clear hysteresis loops originated to the ferreoelectricity were observed and a remanent polarization was 25 μC/cm2 at a maximum applied electric field of 540 kV/cm. In addition, the hydrothermal KNbO3 thick film was able to transmitting and receiving of ultrasonic waves over 50MHz.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Nakamura, K., and Kawamura, Y., IEEE Trans.Ultrason., Ferroelec., Freq., Contr., 47(3), 750 (2000).Google Scholar
2) Shirane, G., Newnham, R., and Pepinsky, R., Phys. Rev. 96, 581 (1954).Google Scholar
3) Klein, N., Hollenstein, E., Damjanovic, D., Trodahl, H. J., Setter, N., and Kuball, M., J. Appl. Phys., 102, 014112 (2007).Google Scholar
4) Shibata, K., Oka, F., Ohishi, A., Mishima, T., and Kanno., I., Appl. Phys. Express, 1, 011501 (2008).Google Scholar
5) Kakio, S., Kurosawa, H., Suzuki, T., and Nakagawa, Y., Jpn. J. Appl. Phys., 47(5), 3802 (2008).Google Scholar
6) Arai, T., Ito, S., Ishikawa, K. and Nakamura, K., Jpn. J. Appl. Phys., 42(9), 6019 (2003).Google Scholar
7) Morita, T., Wagatsuma, Y., Morioka, H., Funakubo, H., Setter, N., Cho., Y., J. Mater. Res., 19, 1862 (2004).Google Scholar
8) Wu, Z. B., Tsukada, T., Yoshimura, M., J.Mater. Sci., 35, 2833 (2000).Google Scholar
9) Suchanek, W. L., Chem.Mater., 16, 1083 (2004).Google Scholar
10) Kamo, T., Nishida, K., Akiyama, K., Sakai, J., Katoda, T., Funakubo, H., Jpn. J. Appl. Phys., 46(10), 6987 (2007).Google Scholar
11) Wood, E. A., Acta Cryst., 4, 353 (1951).Google Scholar
12) Kumada, N., Kyoda, T., Yonesaki, Y., Takei, T., Kinomura, N., Jpn. J. Appl. Phys., 47(5), 3802 (2008).Google Scholar
13) Birol, H., Damjanovic, D., and Setter, N., J.Am. Ceram. Soc., 88 (7), 1754 (2005).Google Scholar