Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:38:19.304Z Has data issue: false hasContentIssue false

The Growth of Effective Potential Barrier Height in Au/ (100) n-GaP Contact Induced by Phosphorous Ion Implantation

Published online by Cambridge University Press:  26 February 2011

Anatol I. Ivashchenko
Affiliation:
Institute of Applied Phyeice of AS of Rep. Moldova, Grosul str. 5, 277028, Kishinev
F.Ya. Kopanskaya
Affiliation:
Institute of Applied Phyeice of AS of Rep. Moldova, Grosul str. 5, 277028, Kishinev
A. I. Solomonov
Affiliation:
Polytechnic Institute, Laboratory of Microelectronics, Shtefan chel Mare str. I68, 2770I2, Kishinev
V. P. Tarchenko
Affiliation:
Polytechnic Institute, Laboratory of Microelectronics, Shtefan chel Mare str. I68, 2770I2, Kishinev
Get access

Abstract

The effect of phosphorous ion implantation and/or rapid thermal treatment on the behaviour of Schottky barrier elect-rophysical characteristics formed on the plane (100) of n-GaP epitaxial layer is discussed. Even though the implantation and post implantation rapid annealing lead to the generation of deep recombination centers in the bulk, the dominant mechanism of current transport across the barrier structure becomes thermo-ionic - like in initial samples. The analysis of the behaviour of forward current-voltage characteristics, steady state capacitance-voltage characteristics and DLTS data allow to conclude that the obtained reduction of forward current after ion im- plactation can be attributed to an increase of effective potenia! barrier height.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Besser, R. S. and Helms, C. R., Appl. Phys. Lett. 52, 1707 (1988).CrossRefGoogle Scholar
2. WilmBen, C. W., Gelb, K. M., Shin, J., Iyer, D. L., and Pouch, J. J., J. Vac. Sci. and Technol. B. 7, 851 (1989).CrossRefGoogle Scholar
3. Hasegawa, H., Saito, T., Konoshi, S., Iehii, H., and Ohuo, H. in Solid State Devices and Materials (Ext. Abstrs. 20-th Int. Conf. Tokyo, 1988) pp. 259262.Google Scholar
4. Iyer, R., Chang, R. R., Dubey, A., Lije, D. L., J. Vac. Sci. and Technol. 6, 1174 (1988).CrossRefGoogle Scholar
5. Rldautsan, S. I., Tiginyanu, I. M., Pyshnaya, N. B., Phys. Stat. Sol. (a). 108, K59 (1988).CrossRefGoogle Scholar
6. Scibior, H., Brylowska, I., Mazurek, P., Acta Phys. Pol. A67, 113 (1985)Google Scholar
7. Nishizawa, J., Shiota, J., Oyama, Y., J. Phys. D: Appl. Phys., 19, 1073 (1986)CrossRefGoogle Scholar
8. Brailovsky, E. Yu., Grigorian, N. E., Marchouk, N. B., Pambuh-chyan, N. H. and Tartachnik, V. T. in Defects and Radiative Effects in Semiconductors. Proc. Int. Conf., Wice, 1978 (Inst. Phys. Ser. No 46: chapter 5, Bristol-London, 1979) pp. 369374.Google Scholar
9. Huang, Q., Grimmeiss, H. G., Samueleon, L., J. Appl. Phys. 58, 3068 (1985)CrossRefGoogle Scholar
10. Cherniaev, V. V., Ponomarev, N. Yu., Ushakov, V. V., Dravin, V. A., and Gippius, A. A., Piz. Tekn. Poluprovodn. 21, 2240 (1987).Google Scholar
11. Ferenczi, G., Pavelka, T., Somogyi, M., PhysTca. BC116, 436 (1987)Google Scholar
12. Voikov, V. V., Opilat, B. Ya., Tartachnik, V. P., Tienine, I. I., Viso- kochistie veshchestva. 2, 60 (1989)Google Scholar
13. Ivashchenko, A. I., Ikizli, M. N., Samorukov, B. E., Slobodchikov, S. V., Fiz. Tekn. Poluprovodn. 12, 86 1978).Google Scholar
14. Endo, T., Hirosaki, Y., Ushida, E., Japan. J. Appl. Phys. 28, 1864 (1989).CrossRefGoogle Scholar
15. Fabre, E., Bhargava, R. H., Appl. Phys. Lett. 24, 322 (1974).CrossRefGoogle Scholar
16. Lang, D. V., J. Appl. Phys. 45, 3029 (1974).Google Scholar
17. Maksimov, S. K., Egprov, V. L., Kryuk, V. V., Phys. Stat. Sol. (a). 73, K283 (1982).CrossRefGoogle Scholar