Article contents
Growth of Diamond from Sputtered Atomic Carbon and Atomic Hydrogen
Published online by Cambridge University Press: 25 February 2011
Abstract
Diamond thin films were grown on a scratched silicon crystal surface by a novel CVD technique. The substrate was exposed to a bombardment of sputtered carbon atoms from a graphite target in a helium DC glow discharge, and subsequently exposed to atomic hydrogen generated by a hot tungsten filament. The resulting diamond films were characterized by Raman spectroscopy and SEM. Deposited film quality, and growth rate are presented as a function of carbon flux, and atomic hydrogen flux. The observed increase in growth rate with atomic hydrogen indicates that a surface reaction mechanism may be responsible for growth. The saturation of the utilization of carbon confirms that the diamond growth is probably a surface reaction. Based on this work we propose that the growth of diamond films in the sequential CVD reactor is most likely governed by surface reactions, and that the necessity of gas phase precursors can be precluded.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1992
References
REFERENCES
- 2
- Cited by