Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T02:43:33.554Z Has data issue: false hasContentIssue false

Growth of Crystalline Silicon Carbide by CVD Using Chlorosilane Gases

Published online by Cambridge University Press:  01 February 2011

Mark Loboda
Affiliation:
[email protected], Dow Corning Compound Semiconductors, Science and Technology, PO Box 994, Mail Stop AUB1007, Midland, MI, 48686, United States, 989-496-6249, 989-496-6360
M. F. MacMillan
Affiliation:
[email protected], Dow Corning Compound Semiconductors, Science and Technology, PO Box 994, Mail Stop AUB1007, Midland, MI, 48686, United States
J. Wan
Affiliation:
[email protected], Dow Corning Compound Semiconductors, Science and Technology, PO Box 994, Mail Stop AUB1007, Midland, MI, 48686, United States
G. Chung
Affiliation:
[email protected], Dow Corning Compound Semiconductors, Science and Technology, PO Box 994, Mail Stop AUB1007, Midland, MI, 48686, United States
E. Carlson
Affiliation:
[email protected], Dow Corning Compound Semiconductors, Science and Technology, PO Box 994, Mail Stop AUB1007, Midland, MI, 48686, United States
Y. Makarov
Affiliation:
[email protected], Semiconductor Technology Research, Inc., 12901 Mill Shed Dr., Richmond, VA, 23112, United States
A. Galyukov
Affiliation:
[email protected], Semiconductor Technology Research, Inc.,, 12901 Mill Shed Dr., Richmond, VA, 23112, United States
M. J. Molnar
Affiliation:
[email protected], Hemlock Semiconductor Corporation, 12334 Geddes Rd., Hemlock, MI, 48426, United States
Get access

Abstract

The forefront of semiconductor silicon carbide technology now approaches commercialization for both materials and device technology. The commercialization of SiC epitaxy processes requires improvement in defect density, uniformity and repeatability. Especially problematic are graphite particles, gas phase nucleation of particles and the limitations placed on achieving growth rates that can positively impact process costs. When it approached the same historical point of development, silicon epitaxy technology shifted to the use of chlorosilane precursor gases to suppress gas phase nucleation and achieve targeted growth rates. Recent work on SiC epitaxy chemistry now investigates the use of HCl, halocarbons and most recently chlorosilane precursors. This paper will review the original work on gas phase nucleation and its control in silicon epitaxy processes using HCl additives and chlorosilanes. Using established dissociation pathways for chlorosilanes, equilibrium chemical reaction models are used to assess the impact of HCl, halocarbons and chlorosilane precursors on growth rates and particle formation SiC epitaxy. Experimental data is presented on the comparative performance of HCl additive and chlorosilane precursors in SiC epitaxy and film properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wolf, S., and Tauber, R., Silicon Processing for the VLSI Era; Vol. 1, Lattice Press, 1986 Google Scholar
2 Nishino, S., Miyanagi, T., Nishio, Y., Mat. Sci. Forum Vols. 264–268 (1998), p.139142 Google Scholar
3 Crippa, D. et. al., Mat. Sci. Forum Vols. 483–485 (2005), p.67-72; Myers, R., Kordina, O., Sishkin, Z., Rao, S., Everly, R., Saddow, S.D., Mat. Sci. Forum Vols. 483-485 (2005), p.73-6Google Scholar
4 Koshka, Y., Lin, H., Melnychuk, G., Mazzola, M., Wyatt, J., Mat. Sci. Forum Vols. 483–485 (2005), p.8184 Google Scholar
5 MacMillan, M., Loboda, M.J.; Chung, G., Carlson, E.; Wan, J. to be published in Silicon Carbide and Related Materials 2005, Mat. Sci. Forum, Trans Tech Publications 2006.Google Scholar
6 Walker, K.L., Jardine, R. E., Ring, M.A., O'Neal, H.E., Int. J. Chem. Kinetics, 30:6988 (1998)Google Scholar
7 Catiore, L. Woiki, D., Roth, P., Int. J. Chem. Kinetics, 29:415ff (1997)Google Scholar
8 Vorob'ev, A.N., Karpov S., Yu., Zhmakin, A.I., Lovtsus, A.A., Makarov, Yu.N., Krishnan, A., J. Cryst. Growth 211:343346 (2000)Google Scholar
9 Eversteijn, F.C., Philips Res. Rep. 26:134144 (1971)Google Scholar
10 Bloem, J., J. Cryst. Growth 18:7076 (1973)Google Scholar
11 Rupp, R., Makarov, Yu.N., Behner, H., Wiedenhofer, A., Phys. Stat. Sol (b), 202:281ff (1997)Google Scholar
12 Wagner, G. Schultz, D., Siche, D., Prog. Cryst. Growth and Char. Mat. 47:139165 (2003)Google Scholar
13 LaVia, F. et al., Mat. Sci. Forum Vols. 483–485 (2005), p.429432 Google Scholar
14 Kumar, R.J., Losse, P.A., Li, C., Seiler, J., Bhat, I.B., Chow, T.P., Borrego, J.M., Gutmann, R.J., Mat. Sci. Forum Vols. 483–485 (2005), p.405–8Google Scholar
15 Huh, S.W., Nigam, S. Polyakov, A.Y., Skrowonski, M., Chung, G., MacMillan, M. Wan, J. Loboda, M.J., these MRS proceedings – Silicon Carbide – Materials, Processing, and Devices, 2006.Google Scholar
16 Klein, P.B. Shanabrook, B.V., Huh, S.W., Polyakov, A.Y., Skrowonski, M., Sumakeris, J.J., O'laughlin, M. J. Appl. Phys. Lett. 88:52110 (2006)Google Scholar
17 Kimoto, T. Nakazawa, S., Hashimoto, K., Matsunami, H., Appl. Phys. Lett. 79:2761 (2001)Google Scholar
18 Storasta, L., Bergman, J.P., Hallin, C., Janzen, E., Mat. Sci. Forum Vols. 389–393 (2002), p.549552 Google Scholar