Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T09:46:18.912Z Has data issue: false hasContentIssue false

Growth of Amorphous, Microcrystalline, and Epitaxial Silicon in Low Temperature Plasma Deposition

Published online by Cambridge University Press:  25 February 2011

C. C. Tsai
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
G.B. Anderson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
R. Anderson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

This paper examines near-equilibrium and non-equilibrium film formation processes in the plasma deposition of Si and their effects on network propagation, defect generation and interface quality based on the concept of film formation as a balance between deposition and ‘etching.’ Using non-F reactant gases and conventional PECVD, epitaxial Si growth was achieved at 250°C. By adjusting the extent of ‘etching’, one can selectively obtain amorphous, microcrystalline, polycrystalline, and epitaxial Si using similar process gases and reactors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

LeComber, P. G., J. Non-Cryst. Solids 115, 1 (1989).Google Scholar
2. See for example, Spear, W. E. and LeComber, P. G., in: The Physics of Hydrogenated Amorphous Silicon, Vol. 1, eds. Joannopoulos, J. D. and Lucovsky, G. (Springer-Verlag, New York, 1984), p. 63.Google Scholar
3. Tsai, C. C., Thompson, R., Doland, C., Ponce, F. A., Anderson, G. B. and Wacker, B., in Amorphous Silicon Technology, eds. Madan, A., Thompson, M. J., Taylor, P. C., LeComber, P. G. and Hamakawa, Y. (Mat. Res. Soc. Symp. Proc. 118, Pittsburgh, PA 1988), p.49.Google Scholar
4. Tsai, C. C., in Amorphous Silicon and Related Materials, ed. Fritzsche, H. (World Scientific Publishing, Singapore, 1989), Vol. 1, p. 123.Google Scholar
5. Nishida, S., Shiimoto, T., Yamada, A., Karasawa, S., Konagai, M. and Takahashi, K., Appl. Phys. Lett. 49, 79 (1986).Google Scholar
6. Shibata, N., Fukuda, K., Ohtoshi, H., Hanna, J., Oda, S. and Shimizu, I., Japan. J. Appl. Phys. 26, L10 (1987).Google Scholar
7. Hanna, J., Kamo, A., Azuma, M., Shibata, N., Shirai, H. and Shimizu, I., in Amorphous Silicon Technology, eds. Madan, A., Thompson, M. J., Taylor, P. C., LeComber, P. G. and Hamakawa, Y. (Mat. Res. Soc. Symp. Proc. 118, Pittsburgh, PA 1988), p.79.Google Scholar
8. Nagamine, K., Yamada, A., Konagai, M. and Takahashi, K., Japan, j. Appl. Phys. 26 (1987) L951.Google Scholar
9. Saitoh, T., Kondo, M., Uematsu, T. and Tamura, M., Pro. 20th Conf. on Solid State Devices and Materials, Tokyo, 1988, p.145.Google Scholar
10. Nijs, J., Baert, K., Symons, J., Kobayashi, K. and Deschepper, P., Appl. Surface Science, 36, 23 (1989).Google Scholar
11. Tsai, C.C., Anderson, G. B., Thompson, R. and Wacker, B., J. Non-Cryst. Solids, 114, 151 (1989).Google Scholar
12. Grunthaner, F. J. and Maserjian, J., in The Physics of SiO2 and Its Interfaces, eds. Pantelides, S. T. (Pergamon, New York, 1987), p.389.Google Scholar
13. van Oort, R. C., Ph.D. Thesis, Delft University of Technology, the Netherlands, 1988.Google Scholar
14. Tsai, C. C., Knights, J. C., Chang, G. and Wacker, B., J. Appl. Phys. 59, 2998 (1986).Google Scholar
15. Collins, R. W. and Yang, B. Y., J. Vac. Sci. Technol. B7, 1155 (1989).Google Scholar