Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T06:56:27.233Z Has data issue: false hasContentIssue false

Growth Model of Epitaxial Pb(Zr0.52Ti0.48)O3 Nanoislands

Published online by Cambridge University Press:  01 February 2011

Ming-Wen Chu
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany
Izabela Szafraniak
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany
Roland Scholz
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany
Dietrich Hesse
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany
Marin Alexe
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany
Ulrich Gösele
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany
Get access

Abstract

Single-crystalline, single-c-domain Pb(Zr0.52Ti0.48)O3 nanoislands (truncated-pyramid in shape) with an average height of ∼9 nm and a base length of ∼50 nm were grown on compressive niobium-doped SrTiO3(001) substrates using chemical solution deposition. Cross-sectional highresolution electron microscopy investigations allowed to propose a growth model of the islands, and they proved the existence of edge-type misfit dislocations at the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alexe, M., Harnagea, C., Hesse, D., and Gösele, U., Appl. Phys. Lett. 75, 1793 (1999).Google Scholar
2. Steinhart, M., Wendorff, J. H., Greiner, A., Wehrspohn, R. B., Nielsch, K., Schilling, J., Choi, J., and Gösele, U., Science 296, 1997 (2002).Google Scholar
3. Szafraniak, I., Harnagea, C., Scholz, R., Hesse, D., and Alexe, M., Appl. Phys. Lett. 83, 2211 (2003).Google Scholar
4. Waser, R., Schneller, T., Hoffmann-Eifert, S., and Ehrhart, P., Integr. Ferroelectr. 36, 3 (2001).Google Scholar
5. Roelofs, A., Schneller, T., Szot, K., and Waser, R., Appl. Phys. Lett. 81, 5231 (2002).Google Scholar
6. Chu, M.-W., Szafraniak, I., Scholz, R., Harnagea, C., Hesse, D., Alexe, M., and Gösele, U. (submitted).Google Scholar
7. Stemmer, S., Streiffer, S. K., Ernst, F., and Rühle, M., Phys. Stat. Sol. (a) 147, 135 (1995).Google Scholar
8. Alpay, S. P., Nagarajan, V., Bendersky, L. A., Vaudin, M. D., Aggarwal, S., Ramesh, R., and Roytburd, A. L., J. Appl. Phys. 85, 3271 (1999).Google Scholar
9. Hellwege, K.-H. (ed.), “Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, Group III: Crystal and Solid State physics”, vol. 1 (Springer-Verlag, 1966), pp. 66.Google Scholar
10. Seifert, A., Vojta, A., Speck, J. S., and Lang, F. F., J. Mater. Res. 11, 1470 (1996).Google Scholar