Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T18:26:59.262Z Has data issue: false hasContentIssue false

Growth Mode and Defects in Aluminum Nitride Sublimated on (0001) 6H-SiC Substrates

Published online by Cambridge University Press:  17 March 2011

Lianghong Liu
Affiliation:
Dept. of Chemical Engineering, Kansas State University, Manhattan, KS 66506
Bei Liu
Affiliation:
Dept. of Chemical Engineering, Kansas State University, Manhattan, KS 66506
Ying Shi
Affiliation:
Dept. of Chemical Engineering, Kansas State University, Manhattan, KS 66506
J. H. Edgar
Affiliation:
Dept. of Chemical Engineering, Kansas State University, Manhattan, KS 66506
Get access

Abstract

The effect of substrate preparation on the sublimation growth of AlN on 6H-SiC was investigated at about 1800°C and 400 torr. Short and long-time sublimation growths of AlN indicated that the nucleation, growth mode, and defects formed depended on the substrate surface preparation. Growth on an off-axis 6H-SiC substrate with 6H-SiC epilayer was in the step flow growth mode in contrast to the island growth mode on as-received substrates, while the 2-D growth was achieved on substrates first coated with an AlN epitaxial layer. Cracks due to the lattice and mainly large thermal expansion coefficient mismatch were always observed in the deposited AlN crystal, as characterized by SEM and optical microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Monemar, B., Journal of Materials Science: Materials in Electronics 10, 227254 (1999).Google Scholar
2. Krukowska-fulde, B. and Niemyski, T., Electron Technology 3(4), 310 (1970).Google Scholar
3. Ishii, T., Sato, T. and Iwata, M., Mineralogical Journal 6(5), 323342 (1971).Google Scholar
4. Slack, G. A. and McNelly, T. F., J. Crystal Growth 34, 263279 (1976).Google Scholar
5. Tanaka, M., Nakahata, S., Sogabe, K., Nakata, H., Tobioka, M., Jpn. J. Appl. Phys. 36, L1062–L1064 (1997).Google Scholar
6. Schowalter, L. J., Rojo, J. Carlos, Yakolai, N., Shusterman, Y., Dovidenko, K., Wang, R., and Slack, G. A., MRS Internet J. Nitride Semicond. Res. 5S1, W6.7 (2000).Google Scholar
7. Schowalter, L. J., Shusterman, Y., Wang, R., Bhat, I., Arunmozhi, G. and Slack, G. A., Appl. Phys. Lett. 76(8), 985987 (2000).Google Scholar
8. Balkas, C. M., Sitar, z., Zheleva, T., Bergman, L., Nemanich, R., Davis, R. F., J. Crystal Growth 179, 363370 (1997).Google Scholar
9. Sarney, W. L., Salamanca, L., Hossain, T., Zhou, P., Jayatirtha, H. N., Kang, H. H., Vispute, R. D., Spencer, M. and Jones, K. A., MRS Internet J. Nitride Semicond. Res. 5S1, W5.5 (2000).Google Scholar
10. Karpov, S. Yu., Zimina, D. V., Makarov, Yu. N., Mokhov, E. N., Roenkov, A. D., Ramm, M. G., and Vodakov, Yu. A., Phys. Stat. Sol. (a) 176, 435 (1999).Google Scholar
11. Segal, A. S., Karpov, S. Yu., Makarov, Yu. N., Mokhov, E. N., Roenkov, A. D., Ramm, M. G., Vodakov, Yu. A., J. Crystal Growth 211, 6872 (2000).Google Scholar
12. Liu, L. and Edgar, J. H., J. Crystal Growth 220(3), 243253 (2000).Google Scholar
13. Hiramatsu, K., Detchprohm, T. and Akasaki, I., Jpn. J. Appl. Phys. 32, 15281533 (1993)Google Scholar
14. Wilson, S., Dickns, C. S., Griffin, J., Spencer, M. G., MRS Internet J. Nitride Semicond. Res. 4S1, G3.61 (1999).Google Scholar
15. Xie, M. H., Seutter, S. M., Zhu, W. K., Zheng, L. X., Wu, H. and Ting, S. Y., Phys. Rev. Lett. 82(13), 2749 (1999).Google Scholar