Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-12T19:24:52.571Z Has data issue: false hasContentIssue false

Growth Mechanisms and Surface Morphology of Ybco Based High-Tc Thin Films and Heterostructures for sns Junctions

Published online by Cambridge University Press:  10 February 2011

R. A. Rao
Affiliation:
Department of Mechanical Eng. and Materials Science, Duke University, Durham, NC 27708
C. B. Eom
Affiliation:
Get access

Abstract

We have controlled the nanoscale growth mechanism and surface morphology of YBa2Cu3O7 (YBCO) based high-Tc thin films and heterostructures, using miscut SrTiO3 substrates. On exact (001) SrTiO3 substrates, the YBCO films grow in a screw dislocation growth mode. The barrier layers (La6.4Sr1.6Cu8O20 and PrBa2Cu3O7) grown on top of such a YBCO film also show spiral growth features, indicating pseudomorphic growth. On miscut substrates (with miscut angle ≥ 4° toward [010]) the YBCO films grow by step-flow. However, the La6.4Sr1. 6Cu8O20 layers grown on such YBCO bottom electrodes, show a high degree of step bunching with rough surface. In contrast, the PrBa2Cu3O7 layers show clear step-terrace surface morphology similar to the underlying YBCO bottom electrode, suggesting the existence of periodic nanoscale steps at the S-N interface. These heterostructures can be used for the fabrication of SNS Josephson junctions to take advantage of the proximity effect coupling at the nanoscale steps at the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Koch, R.H., Umbach, C.P., Clark, G.J., Chaudhari, P., and Laibowitz, R.B., Appl. Phys. Lett., 51, 200 (1987).10.1063/1.98922Google Scholar
2. Likharev, K.K., in The New Superconducting Electronics, edited by Weinstock, H. and Ralston, R.W., Kluwer Academic Publishers, Dordrecht, 1993.Google Scholar
3. Benz, S.P., Appl. Phys. Lett., 67, 2714 (1995).10.1063/1.114302Google Scholar
4. Benz, S.P., Reintsema, C.D., Ono, R.H., Eckstein, J.N., Bozovic, I., and Virshup, G.F., IEEE Trans. Appl. Supercond., 5, 2915 (1995).10.1109/77.403202Google Scholar
5. Huang, L., Rao, R.A., Dittman, R., Braginski, A. and Eom, C.B., unpublished results.Google Scholar
6. Schlom, D.G., Anselmetti, D., Bednorz, J.G., Broom, R.F., Catana, A., Frey, T., Gerber, Ch., H.-J., Guntherodt, Lang, H.P. and Mannhart, J., Z. Phys. B – Condensed. Matter, 86, 163 (1992) – and references therein10.1007/BF01313822Google Scholar
7. Haage, T., Zegenhaen, J., Li, J.Q., Habermeier, H.-U., Cardona, M., Ch. Jooss, Warthmann, R., Forkl, A., and Kronmuller, H., Phys. Rev. B, 56, 8404 (1997).10.1103/PhysRevB.56.8404Google Scholar
8. Mechin, L., Berghuis, P. and Evetts, J.E., Physica C, 302, 102 (1998).10.1016/S0921-4534(98)00209-3Google Scholar
9. Eom, C.B., Sun, J.Z., Yamamoto, K., Marshall, A.F., Luther, K.E., Laderman, S.S., and Geballe, T.H., Appl. Phys. Lett. 55, 595 (1989).10.1063/1.102436Google Scholar
10. Eom, C.B., Sun, J.Z., Streiffer, S.K., Marshall, A.F., Yamamoto, K., Lairson, B.M., Anlage, S.M., Bravman, J.C., Geballe, T.H., Laderman, S.S., and Taber, R.C., Physica C, 171, 351 (1990).10.1016/0921-4534(90)90153-6Google Scholar
11. Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., and Koinuma, H., Science, 266, 1540 (1994).10.1126/science.266.5190.1540Google Scholar
12. Koster, G., Kropman, B.L., Rijnders, G.J.H.M., Blank, D.H.A., and Rogalla, H., Appl. Phys. Lett., 73, 2920 (1998).10.1063/1.122630Google Scholar
13. Matijasevic, V.C., Ilge, B., Staube-Pumpin, B., Rietveld, G., Tuinstra, F., and Mooij, J.E., Phys. Rev. Lett., 76, 4765 (1996).10.1103/PhysRevLett.76.4765Google Scholar
14. Er-Rakho, L., Michel, C., and Raveau, B., J. Solid State Chem., 73, 514 (1988).10.1016/0022-4596(88)90138-7Google Scholar
15. Eom, C.B., Cava, R.J., Phillips, J.M., and Werder, D.J., J. Appl. Phys., 77, 5449, (1995).10.1063/1.359240Google Scholar
16. Rogers, C.T., Inam, A., M.S. Hegde Dutta, B., Wu, X.D., and Venkatesan, T., Appl. Phys. Lett., 55, 2032 (1989).10.1063/1.102340Google Scholar