Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T05:57:13.800Z Has data issue: false hasContentIssue false

Growth Mechanism of thin Film Wide-Gap Semiconductors by Chemical Bath Deposition Technique

Published online by Cambridge University Press:  10 February 2011

P. K. Nair
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autonoma de México, Temixco- 62580, Morelos, MEXICO
P. Parmananda
Affiliation:
Universidad Autónoma del Estado de Morelos, Facultad de Ciencias, Cuernavaca, Morelos, MEXICO, [email protected]
M. T. S. Nair
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autonoma de México, Temixco- 62580, Morelos, MEXICO, [email protected]
Get access

Abstract

Chemical bath deposition is a thin film technique in which semiconductor thin films of typically 0.02 – 1 μm thickness are deposited on substrates immersed in dilute baths containing metal ions and a source of sulfide or selenide ions. Many I–VI, II–VI, IV–VI, and V–VI semiconductors are included in the list of materials deposited by this technique, II–VI compounds CdS, CdSe, ZnS and ZnSe being the most investigated. However, a mathematical model describing the growth mechanism of these films still remains to be established. The deposition process consists of a nucleation phase, growth phase, and a terminal phase, each of which depends on the concentration of the ions in the deposition bath, its temperature, dissociation constants of the metal complex ions, etc. In this paper we propose a mathematical model, which can qualitatively account for most of the features of the experimental growth curves of chemically deposited semiconductor films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nair, P. K., Nair, M. T. S., García, V. M., Arenas, O. L., Peñia, Y., Castillo, A., Ayala, I. T., GomezDaza, O., Sánchez, A., Campos, J., Hu, H., Suárez, R., and Rincón, M. E., Solar Energy Materials and Solar Cells, 52, p. 313 (1998).Google Scholar
2. Nair, P.K., Campos, J. and Nair, M.T.S., Semiconductor Science and Technology, 3, p. 134 (1988).Google Scholar
3. Nair, M.T.S., Nair, P.K., Zingaro, R.A. and Meyers, E.A., J. Appl. Physics, 74, p. 1879 (1993).Google Scholar
4. Savadogo, O., and Mandal, K. C., Sol. Energy Mater. Sol. Cells, 26, p. 117 (1992).Google Scholar
5. Arenas, O. L., Nair, M. T. S., and Nair, P. K., Semicond. Sci. Technol., 12 (1997) 1323.Google Scholar
6. Rtuttle, T., Contreras, M.A., Ward, J.S., Tennant, A.L., Ramanathan, K.R., Keane, J., Noufi, R., Proc. SPIE, 2531 p.194 (1995).Google Scholar
7. Hodes, G., Albu-Yaron, A., Decker, F. and Motisuke, P., Physical Review B 36 p. 4215 (1987).Google Scholar
8. Bode, D. E., in Physics of Thin Films, ed. Hass, G. and Thun, R. E., vol. 3, Academic, New York, p. 275 (1966).Google Scholar
9. Brien, P. O. and Aleese, J. Mc, J. Mater. Chem. 8, p. 2309 (1998).Google Scholar
10. Breen, M.L., Woodward, J.T. IV, Schwartz, D.K., and Apblett, A.W., Chem. Mater. 10, p. 710 (1998).Google Scholar
11. Kaur, I., Pandya, D. K., and Chopra, K. L., J. Electrochem. Soc. 127, p. 743 (1980).Google Scholar
12. Barrow, G. M., Physical Chemistry, 3rd edn., McGraw Hill, Tokyo (1973) p.668.Google Scholar
13. Nair, M. T. S., Nair, P.K. and Campos, J., Thin Solid Films 161, p. 21 (1988).Google Scholar