Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:31:12.186Z Has data issue: false hasContentIssue false

Growth, Characterization and Comparisons of Few-layer Boron Nitride Nanosheets and Graphene

Published online by Cambridge University Press:  01 February 2011

Hongxin Zhang
Affiliation:
[email protected], University of Puerto Rico, Rio Piedras Campus, Physics Department, San Juan, Portugal
Muhammad Sajjad
Affiliation:
[email protected], University of Puerto Rico, Rio Piedras Campus, Physics Department, San Juan, Portugal
Peter Feng
Affiliation:
[email protected], University of Puerto Rico, Rio Piedras Campus, Physics Department, San Juan, Puerto Rico
Get access

Abstract

Few-layer hexagonal boron nitride (h-BN) nanosheets were produced by using super-short-pulse laser produced plasma deposition techniques. Scanning electron microscopy, Energy dispersive x-ray spectroscopy, and micro-Raman spectroscopy were used to explore the morphologies, elemental concentrations and bond structures of the few-layer h-BN nanosheets. High-quality transparent few-layer h-BN nanosheet with the width up to more than 6 μm, and length more than 20 μm were successfully obtained. The change in contrast suggests that the number of atomic layers varies over the area. A comparative study between the obtained few-layer h-BN nanosheets and the previously synthesized few-layer graphene were also conducted in order to further investigate the properties of the promising 2-Dimention (2D) nanomaterials. Our results suggest that the development h-BN nanosheets has the potential to revolutionize the understanding of 2-D nanomaterials with delocalized electronsheralding a transformative technology with dramatic future implications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Watanabe, K., Taniguchi, T., and Kanda, H., Nature Mater. 3, 404 (2004).Google Scholar
2. Chopra, N. G., Luyken, R. J., Cherrey, K., et. al, Science 269, 966 (1995).Google Scholar
3. Gubanov, V. A., Lu, Z. W., Klein, B. M., et.al, Phys. Rev. B 53, 4377 (1996).Google Scholar
4. Rubio, A., Corkill, J. L., and Cohen, M. L., Phys. Rev. B 49, 5081 (1994).Google Scholar
5. Alem, N., Erni, R., Kisielowski, C., et. al, Phys. Rev. B 80, 155425 (2009).Google Scholar
6. Meyer, J. C., Chuvilin, A., and Algara-Siller, G., Nano Letters 9, 2683 (2009).Google Scholar
7. Taniguchi, T., Watanabe, K., and Koizumi, S., Phys. Status Solidi A 201, 2573 (2004).Google Scholar
8. Novoselov, K. S., Geim, A. K., Morozov, S. V., et. al, Nature 438, 197 (2005).Google Scholar
9. Novoselov, K. S., Geim, A. K., Morozov, S. V., et. al, Science 306, 666 (2004).Google Scholar
10. Lee, C., Wei, X., Kysar, J. W., et. al, Science 321, 385 (2008).Google Scholar
11. Ponomarenko, L. A., Schedin, F., Katsnelson, M. I., et. al, Sicence 320, 356 (2008).Google Scholar
12. Zhang, Y., Tan, Y. W., Stormer, H. L., et. al, Nature 438, 201 (2005).Google Scholar
13. Geim, A. K., and Novoselov, K. S., Nature Mater. 6, 183 (2007).Google Scholar
14. Gass, M. H., Bangert, U., Bleloch, A. L., et. al, Nature nanotechnology 3, 676 (2008).Google Scholar
15. Giovannetti, G., Khomyakov, P. A., Brocks, G., et. al, Phys. ReV. B 76, 073103 (2007).Google Scholar
16. Du, A., Smith, S. C., and Lu, G., Chem. Phys. Lett. 447, 181 (2007).Google Scholar
17. Zhang, Z., and Guo, W., Phys. ReV. B 77, 075403 (2008).Google Scholar
18. Park, C. H., and Louie, S. G., Nano Lett. 8, 2200 (2008)Google Scholar
19. Jin, C., Lin, F., Suenaga, K., et. al, Phys. ReV. Lett. 102, 195505 (2009).Google Scholar
20. Ding, Y., Wang, Y. L., and Ni, J., Appl. Phys. Lett. 94, 233107 (2009).Google Scholar
21. Lai, L., Lu, J., Wang, L., et. al, J. Phys. Chem. C 113, 2273 (2009).Google Scholar
22. Zheng, F., Zhou, G., G, , Liu, Z., et. al Phys. Rev. B 78, 205415 (2008).Google Scholar
23. Meyer, J. C., Chuvilin, A., Algara-Siller, G., et. al, Nano Lett. 9, 2683 (2009).Google Scholar
24. Zhi, C., Bando, Y., Tang, C., et. al, Adv. Mater. 21, 2889 (2009).Google Scholar
25. Reina, A., Jia, X. T., Ho, J., et al, Nano Lett. 9(1), 30 (2009).Google Scholar
26. Zhang, H. X. and Feng, P.X., Carbon 48, 359 (2010).Google Scholar
27. Shtter, P. W., Flege, J. I., Sutter, E. A.. Nature materials 7, 406 (2008).Google Scholar
28. Zhang, H. X., Feng, P.X., Makarov, V., et. al, Materials research Bulletin 44, 184 (2009).Google Scholar
29. Yasui, H., Awazu, K., Ikenaga, N., et. al, Vaccum 83, 582 (2009).Google Scholar