Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:39:13.974Z Has data issue: false hasContentIssue false

Growth by Low Pressure Chemical Vapor Deposition of Silicon Quantum Dots on Insulator for Nanoelectronics Devices

Published online by Cambridge University Press:  10 February 2011

T. Baron
Affiliation:
LPM, UTMR5511 CNRS, INSA – Bâtiment 502, 20 Avenue Albert Einstein, F- 69621 Villeurbanne Cedex, [email protected]
F. Martin
Affiliation:
Leti-CEA Technologies Avancées, 17 rue des Martyrs, F-38054 GRENOBLE Cedex
P. Mur
Affiliation:
Leti-CEA Technologies Avancées, 17 rue des Martyrs, F-38054 GRENOBLE Cedex
C. Wyon
Affiliation:
Leti-CEA Technologies Avancées, 17 rue des Martyrs, F-38054 GRENOBLE Cedex
M. Dupuy
Affiliation:
Leti-CEA Technologies Avancées, 17 rue des Martyrs, F-38054 GRENOBLE Cedex
C. Busseret
Affiliation:
LPM, UTMR5511 CNRS, INSA – Bâtiment 502, 20 Avenue Albert Einstein, F- 69621 Villeurbanne Cedex
A. Souifi
Affiliation:
LPM, UTMR5511 CNRS, INSA – Bâtiment 502, 20 Avenue Albert Einstein, F- 69621 Villeurbanne Cedex
G. Guillot
Affiliation:
LPM, UTMR5511 CNRS, INSA – Bâtiment 502, 20 Avenue Albert Einstein, F- 69621 Villeurbanne Cedex
Get access

Abstract

We present the first comparative study of nucleation and growth of Si quantum dots on SiO2, SiOxNy and Si3N4 substrates using silane Low Pressure Chemical Vapor Deposition at low temperature (570–610°C). The samples are investigated by Atomic Force Micoscopy, Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and Spectroscopic Ellipsometry. We confirm that the chemical nature of the surface and precisely the presence of SiO bonds decreases the Si quantum dot density. By optimising the deposition parameters, a Si dot density of 1012 cm−2 can be obtained below 600°C on a pure Si3N4 surface. The influence of hydrogen, provided by silane decomposition, on the Si nucleation mechanism will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakagawa, M. Fukudu, Miyazaki, S., and Hirose, M., Mat. Res. Soc. Symp. Proc. Vol. 452, 243 (1997).10.1557/PROC-452-243Google Scholar
2. , Claassen, and Bloem, J., J. Electrochem. Soc. Vol. 128, No. 6, 1353 (1981).10.1149/1.2127635Google Scholar
3. Nakajima, Y. Sugita, Kawamura, K., Tomita, H., and Yokoyama, N., Jpn. J. Appl. Phys Vol. 35, L189 (1996).10.1143/JJAP.35.L189Google Scholar
4. Choi, H., Hwang, S. W., Kim, I. G., Shin, H. C., Kim, Y., and Kim, K., Appl. Phys. Lett. Vol. 73, No. 21, 3129 (1998).10.1063/1.122695Google Scholar
5. Kim, G., Han, S., Kim, H., Lee, J., Choi, B., Hwang, S., Aim, D., and Shin, H., IEDM Vol. 111, (1998).Google Scholar
6. Ogbuji, L.U.T. and Jayne, D.T., J. Electrochem. Soc. Vol. 140, No. 3, 759 (1993).10.1149/1.2056154Google Scholar
7. See, e. g., Kobeda, E., and Irene, E.A., J. Vac. Sci. Technol. B 6, 574 (1988); J. T. Fitch, C. H. Bjorkman, G. Lucovsky, F. H. Pollak, and X. Yin, J. Vac. Sci. Technol. B 7, 775 (1989).10.1116/1.584402Google Scholar
8. Zunger, A., and Ling-Wang, Wang, Applied Surface Science 102, 350 (1996).10.1016/0169-4332(96)00078-5Google Scholar
9. Proot, C. Delerue, and Allan, G., Appl. Phys. Lett. 61, 1948 (1992).10.1063/1.108372Google Scholar
10. Harbeke, L. Krausbauer, Steigmeier, E. F., Widmer, A. E., Kappert, H. F., and Neugebauer, G., J. Electrochem. Soc., Solid State Science and Technology Vol. 131, No. 3, 675 (1984).Google Scholar