Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:24:26.799Z Has data issue: false hasContentIssue false

Growth and Optical Properties of SnO2 Ultra-Small Nanorods by the Novel Micelle Techniques

Published online by Cambridge University Press:  01 February 2011

Satchidananda Rath
Affiliation:
[email protected], The University of Electro-Communications, Department of Electronic Engineering, 1-5-1 Chofugaoka, Chofu-Shi, Tokyo, 182 8585, Japan, 81-42-443-5747, 81-42-443-5747
Shinji Nozaki
Affiliation:
[email protected], The University of Electro-Communications, Department of Electronic Engineering, 1-5-1 Chofugaoka, Chofu-Shi, Tokyo, 182 8585, Japan
Hiroshi Ono
Affiliation:
[email protected], The University of Electro-Communications, Department of Electronic Engineering, 1-5-1 Chofugaoka, Chofu-Shi, Tokyo, 182 8585, Japan
Kazuo Uchida
Affiliation:
[email protected], The University of Electro-Communications, Department of Electronic Engineering, 1-5-1 Chofugaoka, Chofu-Shi, Tokyo, 182 8585, Japan
Satoshi Khojima
Affiliation:
[email protected], The University of Electro-Communications, Department of Applied Physics and Chemistry, 1-5-1 Chofugaoka, Chofu-Shi, Tokyo, 182 8585, Japan
Get access

Abstract

Tin-dioxide (SnO2) ultra-small nanorods (UNR) have been successfully synthesized using the novel micellar technique. From transmission electron microscopy, the average diameter and length of the UNRs are estimated to be 1.3 nm and 5.0 nm, respectively. The crystal structure of the SnO2 UNRs was found to be tetragonal from the glazing incidence x-ray diffraction. The optical band gap estimated from the absorption spectrum is blue-shifted by 1 eV from that of bulk (3.64 eV). The photoluminescence spectrum shows two groups of peaks each with several fine peaks, one in the wavelength range of 270 – 370 nm and the other in the range of 380 – 500 nm which are due to the strong quantum confinement effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kilic, C. and Zunger, A., Phys. Rev. Lett. 88, 095501–1 (2002).Google Scholar
[2] Ferrere, S., Zaban, A. and Gsegg, B. A., J. Phys. Chem. B 101, 4490 (1997).Google Scholar
[3] He, Y. S., Campbell, J. C., Murphy, R. C., Arendt, M. F. and Swinnea, J. S., J. Mater. Res. 8, 3131 (1993).Google Scholar
[4] Leite, E. R., Weber, I. T., Longo, E. and Varela, J. A., Adv. Mater. 12, 966 (2000).Google Scholar
[5] Lee, E. J. H., Ribeiro, C., Giraldi, T. R., Longo, E. and Leite, E. R., Appl. Phys. Lett. 84, 1745 (2004).Google Scholar
[6] Gu, F., Wang, S. F., Song, C. F., Lu, M. K., Qi, Y. X., Zhou, G. J., Xu, D. and Yuan, D. R., Chem. Phys. Lett. 372, 451 (2003).Google Scholar
[7] Pan, Z. W., Dai, Z. R. and Wang, Z. L., Science 291, 1947 (2001).Google Scholar
[8] Luo, S., Fan, J., Liu, W., Zhang, M., Song, Z., Lin, C., Wu, X. and Chu, P. K., Nanotechnology 17, 1695 (2006).Google Scholar
[9] Wang, G. X., Chen, Y., Yang, L., Yao, J., Needham, S., Liu, H. K. and Ahn, J. H., J. Power Sources 146, 487 (2005).Google Scholar
[10] Tornblom, M. and Henriksson, U., J. Phys. Chem. 101, 6028 (1997).Google Scholar
[11] Murthy, K. A. and Kaler, E. W., Colloid Polym. Sci. 267, 330 (1989)Google Scholar
[12] Lindemuth, P. M. and Bertrand, G. L., J. Phys. Chem. 97, 7769 (1993).Google Scholar
[13] Tornblom, M., Henriksson, U. and Ginley, M., J. Phys. Chem. 98, 7041 (1994).Google Scholar
[14] Tanford, C., Proc. Nat. Acad. Sci. USA 71 (5), 1811 (1974).Google Scholar
[15] Das, S., Kar, S. and Chaudhuri, S., J. Appl. Phys. 99, 114303 (2006).Google Scholar
[16] Gu, F., Wang, S. F., Song, C. F., Lu, M. K., Qi, Y. X., Zhou, G. J., Xu, D. and Yuan, D. R., Chem. Phys. Lett. 372, 451 (2003).Google Scholar
[17] Wang, B., Yang, Y. H., Wang, C. X. and Yang, G. W., Chem. Phys. Lett. 407, 347 (2005).Google Scholar