Published online by Cambridge University Press: 01 February 2011
The integration of high-density CNT bundles as via interconnects in a CNT/Cu-hybrid BEOL stack is evaluated. CNT via-conduits may greatly improve heat dissipation and as such lower interconnect resistance and improve electromigration resistance. Each carbon shell of the nanotube contributes to electrical and thermal conduction and densities as high as 5×1013 shells per cm2 are estimated necessary. CNT growth processes on BEOL compatible metals are presented with tube densities up to 1012cm−2 and shell densities approaching 1013 cm−2 on blanket substrates. Selective growth of CNT bundles with carbon shell densities around 1012cm−2 is demonstrated with high yield. Ohmic behavior of TiN/CNT/Ti contacts is shown with a CNT via resistivity of 1.2 mΩ cm.