Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T18:03:30.007Z Has data issue: false hasContentIssue false

Growth and Fabrication of 2 inch Free-standing GaN Substrates via the Boule Growth Method

Published online by Cambridge University Press:  01 February 2011

Drew Hanser
Affiliation:
Kyma Technologies, Inc. Raleigh, NC 27617, U.S.A.
Lianghong Liu
Affiliation:
Kyma Technologies, Inc. Raleigh, NC 27617, U.S.A.
Edward A. Preble
Affiliation:
Kyma Technologies, Inc. Raleigh, NC 27617, U.S.A.
Darin Thomas
Affiliation:
Kyma Technologies, Inc. Raleigh, NC 27617, U.S.A.
Mark Williams
Affiliation:
Kyma Technologies, Inc. Raleigh, NC 27617, U.S.A.
Get access

Abstract

High quality, single crystal GaN substrates have been demonstrated using a boule growth process. Here we report on the crystalline boules that were formed during the growth process and their material characterization. Using hydride vapor phase epitaxy process, GaN crystals were grown at growth rates greater than 200 μm/hr. Boules greater than 3 mm thick were grown and processed into free-standing substrates. Rocking curve measurements using high-resolution X-ray diffraction were performed on the substrates with FWHM values of 92 and 146 arcsec for the (002) and (102) reflections, respectively. Atomic force microscope images, etch pit studies, and transmission electron micrographs of the GaN material show high quality material quality with a dislocation density in the range of 5×106 to 1×107 cm-2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Maruska, H. P. and Tietjen, J. J., Appl. Phys. Lett. 15, 327 (1969).Google Scholar
2 Porowski, S., MRS Internet J. Nitride Semicond. Res. 4S1, G1.3 (1999).Google Scholar
3 Kelley, M. K., Vaudo, R. P., Phanse, V. M., Gorgens, L., Ambacher, O., and Stutzmann, M., Jpn. J. Appl. Phys., Part 2 38, L217 (1999).Google Scholar
4 Freitas, J. A. Jr, Braga, G. C. B., Moore, W. J., Tischler, J. G., Culbertson, J. C., Fatemi, M., Park, S. S., Lee, S. K., and Park, Y., J. Cryst. Growth 231, 322 (2001).Google Scholar
5 Motoki, K. et al., J. Cryst. Growth 237–239, 912 (2002).Google Scholar
6 Rosner, S.J., Carr, E.C., Ludowise, M.J., Girolami, G., Erikson, H.I., Appl. Phys. Lett. 70 (1997) 420.Google Scholar
7 Sugahara, T., Sato, H., Hao, M., Naoi, Y., Kurai, S., Tottori, S., Yamashita, K., Nishino, K., Romano, L.T., Sakai, S., Jpn. J. Appl. Phys. 37 (1998) L398.Google Scholar
I Kato, Y., Kitamura, S., Hiramatsu, K., Sawaki, N., J. Cryst. Growth 144, 133 (1994).Google Scholar
9 Nam, O., Bremser, M. D., Ward, B. L., Nemanich, R. J., Davis, R. F., Mater. Res. Soc. Symp. Proc. 449, 107 (1997).Google Scholar
10 Kapolnek, D., Keller, S., Vetury, R., Underwood, R.D., Kozodoy, P., DenBaars, S.P., Mishra, U.K., Appl. Phys. Lett. 71, 12041206 (1997).Google Scholar
II Zheleva, T., Smith, S., Thomson, D., Linthicum, K., Gerhke, T., Rajagopal, P., Davis, R. F., J. Electron. Mater. 28, L5– L8 (1999).Google Scholar
12 Mathis, S.K., Romanov, A.E., Chen, L.F., Beltz, G.E., Pompe, W., and Speck, J.S., Phys. Stat. Sol. (a) 179 (2000) 125.Google Scholar
13 Rosner, S.J., Carr, E.C., Ludowise, M.J., Girolami, G., Erikson, H.I., Appl. Phys. Lett. 70 (1997) 420.Google Scholar