No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
Nanotube arrays of amorphous vanadium pentoxide (V2O5) were synthesized through the template-based electrodeposition and its electrochemical properties were investigated for Li-ion intercalation applications. The nanotubes have a length of 10 μm, outer-diameter of 200 nm and inner-diameter of 100 nm. Electrochemical analyses demonstrate that the V2O5 nanotube array delivers a high initial capacity of 300 mAh/g, about twice that of the electrochemically-prepared V2O5 film. Although the V2O5 nanotube array shows a more drastic degradation than the film under electrochemical redox cycles, the nanotube array reaches a stabilized capacity of 160 mAh/g which remains about 1.3 times the stabilized capacity of the film.