Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:33:54.584Z Has data issue: false hasContentIssue false

Growth and Electrochemical Properties of V2O5 Nanotube Arrays

Published online by Cambridge University Press:  15 February 2011

Ying Wang
Affiliation:
Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
Katsunori Takahashi
Affiliation:
Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA Steel Research Laboratory, JFE Steel Corporation, Japan
Huamei Shang
Affiliation:
Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
Kyoungho Lee
Affiliation:
Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA Division of Materials and Chemical Engineering, Soonchunhyang University, Korea
Guozhong Cao
Affiliation:
Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
Get access

Abstract

Nanotube arrays of amorphous vanadium pentoxide (V2O5) were synthesized through the template-based electrodeposition and its electrochemical properties were investigated for Li-ion intercalation applications. The nanotubes have a length of 10 μm, outer-diameter of 200 nm and inner-diameter of 100 nm. Electrochemical analyses demonstrate that the V2O5 nanotube array delivers a high initial capacity of 300 mAh/g, about twice that of the electrochemically-prepared V2O5 film. Although the V2O5 nanotube array shows a more drastic degradation than the film under electrochemical redox cycles, the nanotube array reaches a stabilized capacity of 160 mAh/g which remains about 1.3 times the stabilized capacity of the film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bachmann, H. G., Ahmend, F. R. and Barnes, W. H. Z., Kristallorgr. 115, 110 (1961).Google Scholar
2. Whittinham, M. S., J. Electrochem. Soc., 123, 315 (1976).Google Scholar
3. Park, H. K., Smryl, W. H. and Ward, M. D., J. Electrochem. Soc., 142, 15 (1995).Google Scholar
4. Portion, E., Salle, A. L. G. A, Verbaere, A., Piffard, Y. and Guyomard, D., Electrochim. Acta, 45, 197 (1999).Google Scholar
5. Coustier, F., Hill, J., Owens, B. B., Passerini, S. and Smyrl, W. H, J. Electrochem. Soc. 146, 1355 (1999).Google Scholar
6. Portiron, E., Salle, A. L., Varbaere, A., Piffard, Y. and Guyomard, D.,. Electrochim. Acta, 45, 197 (1999)Google Scholar
7. Patrissi, C. J. and Martin, C. R, J. Electrochem. Soc. 146, 3176 (1999).Google Scholar
8. Takahashi, K., Limmer, S. J., Wang, Y and Cao, G. Z., Jpn. J. Appl. Phys. 44, 662 (2005)Google Scholar
9. Takahashi, K., Limmer, S. J., Wang, Y. and Cao, G. Z., J. Phys. Chem. B 108, 9795 (2004).Google Scholar
10. Takahashi, K., Wang, Y. and Cao, G. Z., J. Phys. Chem. B 109, 48, (2005).Google Scholar
11. Spahr, M. E., Bitterli, P., Nesper, R., Müller, M, Krumeich, F and Nissen, H. U, Angew. Chem.. Int. Ed. 37, 1263 (1998).Google Scholar
12. Spahr, M. E., Stoschitzki-Bitterli, P., Nesper, R., Haas, O. and Novàk, P., J. Electrochem. Soc., 146, 2780 (1999).Google Scholar
13. Dobley, A., Ngalas, K., Yang, S., Zavalij, P. Y. and Whittingham, M. S., Chem. Mater. 13, 4382 (2001).Google Scholar
14. Patzke, G. R., Krumeich, F. and Nesper, R, Angew. Chem. Int. Ed., 41, 2446 (2002).Google Scholar
15. Hulteen, J. C., Martin, C. R., J. Mater. Chem. 7(7), 1075 (1997)Google Scholar
16. Coustier, F., Passerini, S. and Smyrl, W. H, Solid State Ionics 100, 247 (1997).Google Scholar
17. Scarminio, J., Talledo, A., Anderson, A. A., Passerini, S. and Decker, F., Electrochim. Acta 38, 1637 (1993)Google Scholar
18. Limmer, S. J., Cao, G. Z., Adv. Mater. 15, 427 (2003).Google Scholar
19. Limmer, S. J., Chou, T. P. and Cao, G. Z., J. Mater. Sci. 39, 895 (2004).Google Scholar
20. Sato, Y., Nomura, T., Tanaka, H. and Kobayakawa, K., J. Electrochem. Soc., 138(9), L37 (1991).Google Scholar
21. Martin, C. R, Adv. Mater., 3, 457 (1991).Google Scholar
22. Liu, Y. J., Cowen, J. A., Kaplan, T. A., DeGroot, D. C., Schindler, J., Kannewurf, C. R. and Kanatzidis, M. G., Chem. Mater. 7, 1616 (1995).Google Scholar
23. Lee, K.H. and Cao, G.Z. unpublished work.Google Scholar