Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:44:15.010Z Has data issue: false hasContentIssue false

Growth and Doping of GaN Films by ECR-Assisted MBE

Published online by Cambridge University Press:  25 February 2011

T. D. Moustakas
Affiliation:
Molecular Beam Epitaxy Laboratory, Department of Electrical, Computer, and Systems Engineering, Boston University, Boston, MA 02215.
R. J. Molnar
Affiliation:
Molecular Beam Epitaxy Laboratory, Department of Electrical, Computer, and Systems Engineering, Boston University, Boston, MA 02215.
Get access

Abstract

We report on growth, doping, and characterization studies of GaN films produced by the Electron Cyclotron Resonance microwave plasma assisted Molecular Beam Epitaxy. The films were grown heteroepitaxially on sapphire (0001), whose surface was converted into atomically smooth AIN by plasma nitridation. The GaN films were grown in two temperature steps, a process found to promote the layer-by-layer growth mode. ECR plasma conditions to grow either n-type autodoped or semi-insulating GaN film were identified. The structure and microstructure as well as the electrical properties of these two classes of films are discussed. A systematic dependence between electron mobility and net carrier concentration was found, which predicts that the mobility of GaN with a net carrier concentration of 1014cm−3 is about 104cm2 /V.s. The insulating films were intentionally doped either p-type or n-type by incorporation of Mg or Si during film growth. Hole or electron concentrations at 300K between 1018-1019cm−3 have been obtained without requiring any post-growth treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Refractory Semiconductor Materials, edited by Garjunaova, N.A. and Nasledov, D.N. (Consultant Bureau, New York, 1966)Google Scholar
2. Wide Band-Gap Semiconductors, Mat. Res. Soc. Symp. Proc, Vol. 242, edited by Moustakas, T.D., Pankove, J.I., and Hamakura, Y. (1992).Google Scholar
3. Pankove, J.I., Mat. Res. Soc. Proc, Vol. 162, 516 (1990)Google Scholar
4. Davis, R.F., Proc. of the IEEE, 79, 702 (1991)Google Scholar
5. Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett., 48, 353 (1986)Google Scholar
6. Amano, H., Akasaki, I., Hiramatsu, H., Koide, N., and Sawaki, N., Thin Solid Films, 163, 415 (1988)Google Scholar
7. Akasaki, J. and Amano, H., reference 2, p. 383 Google Scholar
8. Asif Khan, M., Kuznia, J.N., Van Hove, J.M., Olson, D.T., Krishnankutty, S., Kolba, R.M., Appl. Phys. Lett., 58, 526 (1991)Google Scholar
9. Menon, G., Master Thesis, Boston University (1990);Google Scholar
Menon, G., Molnar, R., Berkowitz, S.J., and Moustakas, T.D., Bull. APS 36, 544 (1991)Google Scholar
10. Lei, T., Fanciulli, M., Molnar, R.J., Moustakas, T.D., Graham, R.J., and Scanlon, J., Appl. Phys. Lett., 59, 944 (1991)Google Scholar
11. Lei, T., Moustakas, T.D., Graham, R.J., He, T., and Berkowitz, S.R., J. Appl. Phys., 71, 4933 (1992)Google Scholar
12. Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991)Google Scholar
13. Paisley, M.J., Sitar, Z., Posthill, J.B., and Davis, R.F., J. Vac. Sci. and Technol., A7, 701 (1989)Google Scholar
14. Martin, G., Strite, S., Thornston, J., and Morkoc, H., Appl. Phys. Lett., 58, 2375 (1991)Google Scholar
15. Powell, R.C., Tomasch, G.A., Kim, Y.W., Thornton, J.A. and Greene, J.E., MRS Symp. Proc. 162, 525 (1990)Google Scholar
16. Maruska, H.P. and Tietjen, J.J., Appl. Phys. Lett. 15, 327 (1969)Google Scholar
17. Manasevit, H.M., Erdmann, F.M., and Simpson, W.I., J. Electochem. Soc. 118, 1864 (1971)Google Scholar
18. Yoshida, S., Misawa, S., Fujii, Y., Tanaka, S., Hayakawa, S., Gonda, S., and Itoh, A., J. Vac. Sci. Technol., 16, 990 (1979)Google Scholar
19. Pankove, J.I., Berkeyheiser, J.E. and Miller, E.A., J. Appl. Phys., 45 1280 (1974)Google Scholar
20. Nakamura, S., Mukai, T., and Senoh, M., Jpn. J. Appl. Phys. L1998 (1991)Google Scholar
21. Eddy, C.R. Jr, Moustakas, T.D., and Scanlon, J., J. Appl. Phys. 73 (Jan. 1993)Google Scholar
22. Moustakas, T.D., Molnar, R.J., Lei, T., Menon, G., and Eddy, C.R. Jr, Reference 2, p 427.Google Scholar
23. Moustakas, T.D., Lei, T., and Molnar, R.J., Physica B; Condensed Matter (1993)Google Scholar
24. Lei, T. and Moustakas, T.D., Reference 2, p. 433 Google Scholar
25. Lei, T., Ludwig, K.F., and Moustakas, T.D., J. Appl. Phys. (submitted for publication)Google Scholar
26. Sasaki, T. and Zembutsu, S., J. Appl. Phys. 61, 2533 (1987)Google Scholar
27. Molnar, R.J., Lei, T., and Moustakas, T.D., Appl. Phys. Lett. 62 (Jan. 1993).Google Scholar
28. Molnar, R.J., Lei, T., and Moustakas, T.D. (this volume)Google Scholar
29. Ilegems, M., Cryst, J.. Growth 13/14, 360 (1972)Google Scholar
30. Nakamura, S., Mukai, T., and Senoh, M., J. Appl. Phys. 71, 5543 (1992)Google Scholar
31. Nakamura, S., Senoh, M., and Makai, T., Jpn. J. Appl. Phys., L1708 (1992)Google Scholar
32. Molnar, R.J. and Moustakas, T.D., Appl. Phys. Lett, (submitted for publication)Google Scholar
33. Akasaki, I., Amano, H., Koide, N., Kotaki, M., and Mannabe, K. (to be published)Google Scholar
34. Mott, N.F., Twose, T.D., Advances in Physics 10, 107 (1961)Google Scholar
35. Hannay, N.B., Semiconductors (Reinhold Publishing Corp., New York, 1960)Google Scholar
36. Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys., 31 (1992)Google Scholar