Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:57:37.008Z Has data issue: false hasContentIssue false

The Growth and Doping of Al(As)Sb by Metal-Organic Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

R. M. Biefeld
Affiliation:
Sandia National Laboratory, Albuquerque, New Mexico, 87185, USA
A. A. Allerman
Affiliation:
Sandia National Laboratory, Albuquerque, New Mexico, 87185, USA
S. R. Kurtz
Affiliation:
Sandia National Laboratory, Albuquerque, New Mexico, 87185, USA
Get access

Abstract

AlSb and AlAsxSb1−x epitaxial films grown by metal-organic chemical vapor deposition were successfully doped p- or n-type using diethylzinc or tetraethyltin, respectively. AlSb films were grown at 500°C and 76 torr using trimethylamine or ethyldimethylamine alane and triethylantimony. We examined the growth of AlAsSb using temperatures of 500 to 600 ° C, pressures of 65 to 630 torr, V/Ill ratios of 1–17, and growth rates of 0.3 to 2.7 μm/hour in a horizontal quartz reactor. SIMS showed C and 0 levels below 2 × 1018 cm−3 and 6×1018 cm−3 respectively for undoped AlSb. Similar levels of O were found in AlAs0.16Sb0.84 films but C levels were an order of magnitude less in undoped and Sn-doped AlAs0.16 Sb0.84 films. Hall measurements of AlAs0.16Sb0.84 showed hole concentrations between l×1017 cm−3 to 5×1018 cm−3 for Zn-doped material and electron concentrations in the low to mid 1018 cm−3 for Sndoped material. We have grown pseudomorphic InAs/InAsSb quantum well active regions on AlAsSb cladding layers. Photoluminescence of these layers has been observed up to 300 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kurtz, S. R., Biefeld, R. M., Dawson, L. R., Baucom, K. C., and Howard, A. J., Appl. Phys. Lett. 64, 812 (1994).Google Scholar
[2] Choi, H. K., Turner, G. W., and Liau, Z. L., Appl. Phys. Lett. 65, 2251 (1994).Google Scholar
[3] Zhang, Y-H., Appl. Phys. Lett. 66, 118 (1995).Google Scholar
[4] Biefeld, R. M., Allerman, A. A., and Pelczynski, M. W., Appl. Phys. Lett. 68, 932 (1996).Google Scholar
[5] Chen, W. K., Ou, J., and Lee, W-I., Jpn, J. Appl. Phys. 33, L402 (1994).Google Scholar
[6] Cao, D. S., Fang, Z. M., and Stringfellow, G. B., J. Crystal Growth, 113, 441 (1991).Google Scholar
[7] Bougnot, G. J., Foucaran, A. F., Marjan, M., Etienne, D., Bougnot, J., Delannoy, F. M. H., and Roumanille, F. M., J. Crystal Growth, 77, 400 (1987).Google Scholar
[8] Leroux, M., Tromson-Carli, A., Gibart, P., Verie, C., Bernard, C., and Schouler, M. C.,, J. Crystal Growth, 48, 367 (1980).Google Scholar
[9] Wang, C. A., Finn, M. C., Salim, S., Jensen, K. F., and Jones, A. C., Appl. Phys. Lett. 67, 1384 (1995).Google Scholar
[10] Stringfellow, G. B.. “Organometallic Vapor Phase Epitaxy:Theory and Practice” (Academic Press, Inc., San Diego, CA, 1989).Google Scholar
[11] Tischler, M. A., Potemski, R. M., Kuech, T. F., Cardone, F., Goorsky, M. S., and Scilla, G., J. Crystal Growth, 107, 268 (1991).Google Scholar
[12] Hobson, W. S., Harris, T. D., Abernathy, C. R., and Pearton, S. J., Appl. Phys. Lett., 58, 77 (1991).Google Scholar
[13] Schneider, R. P., Bryan, R. P., Jones, E. D., Biefeld, R. M., and Olbright, G. R., J. Crystal Growth, 123, 487 (1992).Google Scholar
[14] Biefeld, R.M., Hills, C.R. and Lee, S.R., J. Crystal Growth, 91,515 (1988).Google Scholar
[15] Kurtz, S. R. and Biefeld, R. M., Appl. Phys. Lett. 66, 364 (1995).Google Scholar