Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:34:11.935Z Has data issue: false hasContentIssue false

Growth and Characterization of ZnO Nanowires

Published online by Cambridge University Press:  15 February 2011

Jason B. Baxter
Affiliation:
Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, U.S.A.
Ron E.M.W. Bessems
Affiliation:
Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, U.S.A.
Eray S. Aydil
Affiliation:
Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, U.S.A.
Get access

Abstract

Single crystal ZnO nanowires were grown by chemical vapor deposition using monodisperse 5 nm or 20 nm diameter gold nanoparticle catalysts to control the nanowire diameter and location. The nanowires reach several microns in length and grow only from the gold nanoparticles. The nanowires have narrowly dispersed diameters, albeit significantly larger than the diameter of the gold particles used for catalyzing the growth. The nanowires grow in the [ 0 1 10 ] or [ 1 1 10 ] directions normal to the lowest energy planes in ZnO. ZnO nanowires emit in the near ultraviolet region of the electromagnetic spectrum upon excitation with highenergy photons or electrons. Electron diffraction and absence of luminescence associated with oxygen vacancies indicate high quality crystalline ZnO nanowires. Cathodoluminescence e mission along the entire length of the wire is consistent with a lack of non-radiative recombination sites associated with defects, lending further support for the high quality of these nanowires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Huang, M. H., Mao, S., Feick, H., Yan, H. Q., Wu, Y. Y., Kind, H., Weber, E., Russo, R., and Yang, P. D.. Science 292, 1897 (2001).Google Scholar
2 Bagnall, D. M., Chen, Y. F., Zhu, Z., Yao, T., Koyama, S., Shen, M. Y., and Goto, T.. Applied Physics Letters 980, Japan Tohoku Univ,Dept Phys, Sendai, Miyagi 980, Japan 70, 2230 (1997).Google Scholar
3 Huang, M. H., Wu, Y. Y., Feick, H., Tran, N., Weber, E., and Yang, P. D.. Adv. Mater. 13, 113 (2001).Google Scholar
4 Yao, B. D., Chan, Y. F., and Wang, N.. Appl. Phys. Lett. 81, 757 (2002).Google Scholar
5 Wu, J. J. and Liu, S. C.. Adv. Mater. 14, 215 (2002).Google Scholar
6 Wagner, R. S. and Ellis, W. C.. Appl. Phys. Lett. 4, 89 (1964).Google Scholar
7 Wu, Y. Y. and Yang, P. D.. J. Am. Chem. Soc. 123, 3165 (2001).Google Scholar
8 Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J. F., and Lieber, C. M.. Appl. Phys. Lett. 78, 2214 (2001).Google Scholar
9 Wander, A., Schedin, F., Steadman, P., Norris, A., McGrath, R., Turner, T. S., Thornton, G., and Harrison, N. M.. Phys. Rev. Lett. 86, 3811 (2001).Google Scholar
10 Fu, Z. X., Lin, B. X., Liao, G. H., and Wu, Z. Q.. J. Cryst. Growth 193, 316 (1998).Google Scholar
11 Vanheusden, K., Warren, W. L., Seager, C. H., Tallant, D. R., Voigt, J. A., and Gnade, B. E.. J. Appl. Phys. 79, 7983 (1996).Google Scholar