Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:24:02.975Z Has data issue: false hasContentIssue false

Growth and Characterization of Ternary and Quaternary Compounds of Iny (AlxGa1−x)1-yAs on (100) InP

Published online by Cambridge University Press:  26 February 2011

W. F. Tseng
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Md 20899
J. Comas
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Md 20899
B. Steiner
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Md 20899
G. Metze
Affiliation:
COMSAT, Clarksburg, Md 20906.
A. Cornfeld
Affiliation:
COMSAT, Clarksburg, Md 20906.
P. B. Klein
Affiliation:
COMSAT, Clarksburg, Md 20906.
D. K. Gaskill
Affiliation:
Naval Research Laboratory. Washington, DC 20375
W. Xia
Affiliation:
University of California, San Diego, La Jolla, Ca 92093
S. S. Lau
Affiliation:
University of California, San Diego, La Jolla, Ca 92093
Get access

Abstract

The acquisition of RHEED oscillation information on (100) GaAs substrates is described for use in the growth of “lattice-matched] Iny (AlxGa1−x)1-Y As layers on (100) InP substrates with 0.52 < y < 0.53 and 0.00 < x < 1.00. The observed frequency of the RHEED oscillations on GaAs is the same as on InP, however, the measured lattice parameters of the grown layers are less than that of InP. The x-ray diffraction images show that the misfit dislocations perpendicular to the primary flats of 2” round (100) InP wafers are denser than the parallel ones. Photoluminescence (at 10K) and photoreflectance (at 300K) measurements on a composite layer structure of x=0, 0.2, 0.4, 0.6, 0.8 and 1 clearly show six distinct peaks with narrow FWHMs of less than 20 meV. The measured bandgaps increase linearly with the Al content.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Griem, H. T., Ray, S., Freeman, J. L., and West, D. L., Appl. Phys. Lett. 56, 1067 (1990).CrossRefGoogle Scholar
2. Harrang, J. P., Daniels, R. R., Fuji, H. S., Griem, H. T., and Ray, S., IEEE Electron Device Lett. 12, 206 (1991)Google Scholar
3. Chao, P. C., Tessmer, A. J., Duh, K. -H. G., Ho, P., Kao, M. Y., Smith, P. M., Ballingall, J. M., Liu, S. -M. J., and Jabra, A. A., IEEE Electron Device Lett. 11, 59 (1990).CrossRefGoogle Scholar
4. Chen, Y. K., Nottenburg, R. N., Panish, M. B., Hamm, R. A., and Humphrey, D. A., IEEE Electron Device Lett. 10, 267 (1989).Google Scholar
5. Alavi, K., Temki, H., Wagner, W. R., and Cho, A. Y., Appl. Phys. Lett. 42, 254 (1983).Google Scholar
6. Pearsall, T. P., IEEE J. Quantum Electronics, OE–16, 709 (1980).Google Scholar
7. Wakefield, B., Halliwell, M. A. G., Kerr, T., Andrews, D. A., Davies, G. J., and Wood, D. R., Appl. Phys. Lett. 44, 341 (1984).Google Scholar
8. Gaskill, D. K., Bottka, N., Aina, L., and Mattingly, M., Appl. Phys. Lett. 56, 1269 (1990).Google Scholar
9. Barnard, J. A., Wood, C. E. C., Eastman, L. E., IEEE Electron Device Lett. EDL–3, 318 (1982).Google Scholar
10. Olego, D., Chang, T. Y., Silberg, E., Caridi, E. A., and Pinczuk, A., Appl. Phys. Lett. 41, 476 (1982).CrossRefGoogle Scholar
11. Kopf, R. F., Kuo, J. M., and Ohring, M., J. Vac. Sci. Technol. B9, 1920 (1991).Google Scholar
12. Welch, D. F., Wicks, G. W., Eastman, L. F., Parayanthal, P., and Poliak, F. H., Appl. Phys. Lett. 46, 169 (1985).CrossRefGoogle Scholar
13. Fuji, T., Nakata, Y., Sugiyama, Y., and Hiyamizu, S., Jpn. J. Appl. Phys. 25, L254 (1986).CrossRefGoogle Scholar