Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T05:10:01.863Z Has data issue: false hasContentIssue false

Growth and Characterization of Pseudomorphic Gel-yCy and Si1-yCy Alloy Layers on Si Substrates

Published online by Cambridge University Press:  15 February 2011

K. Brunner
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstralße 1, D-70569 Stuttgart, Germany
K. Eberl
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstralße 1, D-70569 Stuttgart, Germany
W. Winter
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstralße 1, D-70569 Stuttgart, Germany
Get access

Abstract

Pseudomorphic Gel-yCy and Sil-yCy alloy layers have been synthesized by solidsource molecular beam epitaxy on Si (001) substrates. High quality short-period Gel-y Cy/Si superlattice structures with a carbon content up to about 5 % are grown at low substrate temperature. The partial compensation of strain within Ge964C036 layers of 7 Å thickness improves the thermal stability against lattice relaxation, compared to pure Ge layers. Band-edge related photoluminescence is observed from pseudomorphic Sil-yCy/Si multiple quantum well structures at low temperature. The two predominant luminescence lines are attributed to no-phonon transitions and Si-Si TO phonon replicas of bound excitons confined within the Sil-yCy alloy quantum well layers. The tensile strain within the Sil-yCy layers shifts the twofold degenerate Δ(2) conduction band valley down in energy and is mainly responsible for the linear band gap reduction which is observed for increasing C content.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For a review see e. g.: Properties of Strained and Relaxed Silicon Germanium, edited by Kasper, E., (EMIS Datareviews Series No. 12, 1995).Google Scholar
2. Ismail, K., LeGoues, F. K., Saenger, K. L., Arafa, M., Chu, J. O., Mooney, P. M., and Meyerson, B. S., Phys. Rev. Lett. 73, 3447 (1994). K. Ismail, J. O. Chu, and B. S. Meyerson, Appl. Phys. Lett. 64, 3124 (1994).Google Scholar
3. Sturm, J. C., Manoharan, H., Lenchyshyn, L. C., Thewalt, M. L. W., Rowell, N. L., Noel, J.-P., and Houghton, D. C., Phys. Rev. Lett. 66, 1362 (1991).Google Scholar
4. Eberl, K., Iyer, S. S., Zollner, S., Tsang, J. C., and LeGoues, F. K.. Appl. Phys. Lett. 60, 3033 (1992).Google Scholar
5. Iyer, S. S., Eberl, K., Goorsky, M. S., LeGoues, F. K., Tsang, J. C., and Cardone, F., Appl. Phys. Lett. 60, 356 (1992).Google Scholar
6. Osten, H. J. and Klatt, J., Appl. Phys. Lett. 65, 630 (1994).Google Scholar
7. Boucaud, P., Francis, C., Julien, F. H., Lourtioz, J.-M., Bouchier, D., Bodnar, S., Lambert, B., and Regolini, J. L., Appl. Phys. Lett. 64, 875 (1994).Google Scholar
8. Soref, R. A., J. Appl. Phys. 70, 2470 (1991).Google Scholar
9. Demkov, A. A. and Sankey, O. F., Phys. Rev. B 48, 2207 (1993).Google Scholar
10. Brunner, K., Eberl, K., Winter, W., and Bugiel, E., Appl. Surf. Sci. (to be published).Google Scholar
11. Brunner, K., Eberl, K., and Winter, W., Phys. Rev. Lett. (to be published).Google Scholar